ﻻ يوجد ملخص باللغة العربية
We have carried out sub-mm 12CO(J=3-2) observations of 6 giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) with the ASTE 10m sub-mm telescope at a spatial resolution of 5 pc and very high sensitivity. We have identified 32 molecular clumps in the GMCs and revealed significant details of the warm and dense molecular gas with n(H2) $sim$ 10$^{3-5}$ cm$^{-3}$ and Tkin $sim$ 60 K. These data are combined with 12CO(J=1-0) and 13CO(J=1-0) results and compared with LVG calculations. We found that the ratio of 12CO(J=3-2) to 12CO(J=1-0) emission is sensitive to and is well correlated with the local Halpha flux. We interpret that differences of clump propeties represent an evolutionary sequence of GMCs in terms of density increase leading to star formation.Type I and II GMCs (starless GMCs and GMCs with HII regions only, respectively) are at the young phase of star formation where density does not yet become high enough to show active star formation and Type III GMCs (GMCs with HII regions and young star clusters) represents the later phase where the average density is increased and the GMCs are forming massive stars. The high kinetic temperature correlated with Halpha flux suggests that FUV heating is dominant in the molecular gas of the LMC.
In order to precisely determine temperature and density of molecular gas in the Large Magellanic Cloud, we made observations of optically thin $^{13}$CO($J=3-2$) transition by using the ASTE 10m telescope toward 9 peaks where $^{12}$CO($J=3-2$) clump
We present 12CO J=1-0 observations from the Caltech Millimeter Array of a field in the nearby spiral galaxy M81. We detect emission from three features that are the size of large giant molecular clouds (GMCs) in the Milky Way Galaxy and M31, but are
We observed a 10x20 pc region of the molecular cloud M17 in the 12CO and 13CO J=3-2 and J=2-1 transitions to determine their global behavior and to assess the reliability of using ratios of CO line intensities integrated over an entire cloud to deter
After 30 Doradus, N11 is the second largest and brightest nebula in the LMC. This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of $^{12}$CO (J=1--0 an
We present results of wide-field $^{12}$CO ($J = 2 - 1$) and $^{13}$CO ($J = 2 - 1$) observations toward the Aquila Rift and Serpens molecular cloud complexes (25$^circ < l < 33^circ$ and $1^circ < b < 6^circ$) at an angular resolution of 3$$.4 ($app