ﻻ يوجد ملخص باللغة العربية
The description of the cosmological expansion and its possible local manifestations via treating the proper conformal transformations as a coordinate transformation from a comoving Lorentz reference frame (RF) to an uniformly accelerated RF is given. The explicit form of the conformal deformation of time is established. The expression defining the location cosmological distance in the form of simple function on the red shift is obtained. By coupling it with the well known relativistic formula defining the relative velocity of the mutually moving apart source and receiver of the signal, the explicit analytic expression for the Hubble law is obtained. The connection between acceleration and the Hubble constant follows therefrom immediately. The expression for the conformal time deformation in the small time limit leads to the quadratic time nonlinearity. Being applied to describe the location-type experiments, this predicts the existence of the uniformly changing blue-shifted frequency drift. Phenomenon of the Pioneer Anomaly (PA) is treated as the first of such a kind of effects discovered experimentally. The obtained formulae reproduce the PA experimental data. The expression generalizing the conventional Hubble law reproduces the experimentally observed phenomenon which in the frame of the conventional cosmological paradigm is treated as the transition from the decelerated expansion of the Universe to the accelerated one.
The description of the cosmological expansion and its possible local manifestations via treating the proper conformal transformations as a coordinate transformation from a comoving Lorentz reference frame to an uniformly accelerated one is given. The
On the basis of the nonisometric transformations subgroup of the SO(4.2) group, the nonlinear time inhomogeneity one-parameter conformal transformations are constructed. The connection between the group parameter and the Hubble constant H0 is establi
We perform a deductive study of accelerating Universe and focus on the importance of variable time-dependent $Lambda$ in the Einsteins field equations under the phenomenological assumption, $Lambda =alpha H^2$ for the full physical range of $alpha$.
From Doppler tracking data and data on circular motion of astronomical objects we obtain a metric of the Pioneer Anomaly. The metric resolves the issue of manifest absence of anomaly acceleration in orbits of the outer planets and extra-Pluto objects
The origin of negative pressure fluid (the dark energy) is investigated in the quantum model of the homogeneous, isotropic and closed universe filled with a uniform scalar field and a perfect fluid which defines a reference frame. The equations of th