Impacts of preference and geography on epidemic spreading


الملخص بالإنكليزية

We investigate the standard susceptible-infected-susceptible model on a random network to study the effects of preference and geography on diseases spreading. The network grows by introducing one random node with $m$ links on a Euclidean space at unit time. The probability of a new node $i$ linking to a node $j$ with degree $k_j$ at distance $d_{ij}$ from node $i$ is proportional to $k_{j}^{A}/d_{ij}^{B}$, where $A$ and $B$ are positive constants governing preferential attachment and the cost of the node-node distance. In the case of A=0, we recover the usual epidemic behavior with a critical threshold below which diseases eventually die out. Whereas for B=0, the critical behavior is absent only in the condition A=1. While both ingredients are proposed simultaneously, the network becomes robust to infection for larger $A$ and smaller $B$.

تحميل البحث