ﻻ يوجد ملخص باللغة العربية
Using a cleanly tagged data sample of $ u_mu$ charged current events, it is demonstrated that the rate at which such events are mis-identified as $ u_e$s is accurately simulated in the MiniBooNE $ u_mu to u_e$ analysis. Such mis-identification, which could arise from muon internal bremsstrahlung, is decisively ruled out as a source of the low energy electron-like events reported in the MiniBooNE search for $ u_mu to u_e$ oscillations. This refutes the conclusions of a recent paper which postulates that hard bremsstrahlung could form a substantial background to the MiniBooNE $ u_e$ sample.
We present the results of a new analysis of the data of the MiniBooNE experiment taking into account the additional background of photons from $Delta^{+/0}$ decay proposed in arXiv:1909.08571 and additional contributions due to coherent photon emissi
The MiniBooNE experiment is a $ u_muto u_e$ and $bar u_mutobar u_e$ appearance neutrino oscillation experiment at Fermilab. The neutrino mode oscillation analysis shows an excess of $ u_e$ candidate events in the low-energy region. These events are a
MicroBooNE is a neutrino experiment that utilizes a liquid argon time projection chamber (LArTPC) located on-axis in the Booster Neutrino Beam (BNB) at Fermilab. One of the experiments main goals is to search for excess low-energy electromagnetic-lik
Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2 < E_gamma <= 1 GeV and transverse momentum with respect to the parent muon p_T < 40 MeV/c, and 1
A sensitive search for anomalous LSND-like nu_mu to nu_e oscillations has been performed by the ICARUS Collaboration exposing the T600 LAr-TPC to the CERN to Gran Sasso (CNGS) neutrino beam. The result is compatible with the absence of additional ano