ﻻ يوجد ملخص باللغة العربية
We apply a hybrid Molecular Dynamics and mesoscopic simulation technique to study the steady-state sedimentation of hard sphere particles for Peclet numbers (Pe) ranging from 0.08 to 12. Hydrodynamic back-flow causes a reduction of the average sedimentation velocity relative to the Stokes velocity. We find that this effect is independent of Pe number. Velocity fluctuations show the expected effects of thermal fluctuations at short correlation times. At longer times, non-equilibrium hydrodynamic fluctuations are visible, and their character appears to be independent of the thermal fluctuations. The hydrodynamic fluctuations dominate the diffusive behavior even for modest Pe number, while conversely the short-time fluctuations are dominated by thermal effects for a surprisingly large Pe numbers. Inspired by recent experiments, we also study finite sedimentation in a horizontal planar slit. In our simulations distinct lateral patterns emerge, in agreement with observations in the experiments.
Shear thickening is a widespread phenomenon in suspension flow that, despite sustained study, is still the subject of much debate. The longstanding view that shear thickening is due to hydrodynamic clusters has been challenged by recent theory and si
Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform perio
We present a detailed numerical study of multi-component colloidal gels interacting sterically and obtained by arrested phase separation. Under deformation, we found that the interplay between the different intertwined networks is key. Increasing the
Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations. We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF) essentially eliminating the noise of the bare rand
We study the effect of solvent granularity on the effective force between two charged colloidal particles by computer simulations of the primitive model of strongly asymmetric electrolytes with an explicitly added hard sphere solvent. Apart from mole