ترغب بنشر مسار تعليمي؟ اضغط هنا

Potts Glass on Random Graphs

134   0   0.0 ( 0 )
 نشر من قبل Florent Krzakala
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the q-state Potts model with anti-ferromagnetic interactions on large random lattices of finite coordination. Due to the frustration induced by the large loops and to the local tree-like structure of the lattice this model behaves as a mean field spin glass. We use the cavity method to compute the temperature-coordination phase diagram and to determine the location of the dynamic and static glass transitions, and of the Gardner instability. We show that for q>=4 the model possesses a phenomenology similar to the one observed in structural glasses. We also illustrate the links between the positive and the zero-temperature cavity approaches, and discuss the consequences for the coloring of random graphs. In particular we argue that in the colorable region the one-step replica symmetry breaking solution is stable towards more steps of replica symmetry breaking.



قيم البحث

اقرأ أيضاً

The random field q-States Potts model is investigated using exact groundstates and finite-temperature transfer matrix calculations. It is found that the domain structure and the Zeeman energy of the domains resembles for general q the random field Is ing case (q=2), which is also the expectation based on a random-walk picture of the groundstate. The domain size distribution is exponential, and the scaling of the average domain size with the disorder strength is similar for q arbitrary. The zero-temperature properties are compared to the equilibrium spin states at small temperatures, to investigate the effect of local random field fluctuations that imply locally degenerate regions. The response to field pertubabtions (chaos) and the susceptibility are investigated. In particular for the chaos exponent it is found to be 1 for q = 2,...,5. Finally for q=2 (Ising case) the domain length distribution is studied for correlated random fields.
We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the random permutation Potts glass.
95 - D. Bolle , P. Kozlowski 2001
We show that for a particular choice of the coupling parameters the Ashkin-Teller spin-glass neural network model with the Hebb learning rule and one condensed pattern yields the same thermodynamic properties as the four-state anisotropic Potts-glass neural network model. This equivalence is not seen at the level of the Hamiltonians.
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter i n our theory, allowing us to answer what the differences are between this description and the mean-field theory i.e., the fully connected theory. We have considered the random network random field Ising model where the spin exchange interaction as well as the RF are random variables following a Gaussian distribution. The results were found within the replica symmetric (RS) approximation, whose stability is obtained using the two-replica method. This also puts our work in the context of a broader discussion, which is the RS stability as a function of the connectivity. In particular, our results show that for small connectivity there is a region at zero temperature where the RS solution remains stable above a given value of the magnetic field no matter the strength of RF. Consequently, our results show important differences with the crossover between the RF and SG regimes predicted by the fully connected theory.
We study spin glass behavior in a random Ising Coulomb antiferromagnet in two and three dimensions using Monte Carlo simulations. In two dimensions, we find a transition at zero temperature with critical exponents consistent with those of the Edwards Anderson model, though with large uncertainties. In three dimensions, evidence for a finite-temperature transition, as occurs in the Edwards-Anderson model, is rather weak. This may indicate that the sizes are too small to probe the asymptotic critical behavior, or possibly that the universality class is different from that of the Edwards-Anderson model and has a lower critical dimension equal to three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا