ﻻ يوجد ملخص باللغة العربية
The exciton-polariton modes of a quantum dot lattice embedded in a planar optical cavity are theoretically investigated. Umklapp terms, in which an exciton interacts with many cavity modes differing by reciprocal lattice vectors, appear in the Hamiltonian due to the periodicity of the dot lattice. We focus on Bragg polariton modes obtained by tuning the exciton and the cavity modes into resonance at high symmetry points of the Brillouin Zone. Depending on the microcavity design these polaritons modes at finite in-plane momentum can be guided and can have long lifetimes. Moreover, their effective mass can be extremely small, of the order of $10^{-8} m_0$ ($m_0$ is the bare electron mass), and they constitute the lightest exciton-like quasi-particles in solids.
We propose a novel mechanism for designing quantum hyperbolic metamaterials with use of semi-conductor Bragg mirrors containing periodically arrangedquantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the f
We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theor
Over the past decade, exciton-polaritons in semiconductor microcavities have attracted a great deal of interest as a driven-dissipative quantum fluid. These systems offer themselves as a versatile platform for performing Hamiltonian simulations with
We present a semi-analytic and asymptotically exact solution to the problem of phonon-induced decoherence in a quantum dot-microcavity system. Particular emphasis is placed on the linear polarization and optical absorption, but the approach presented
The discovery of quantum spin Hall materials with huge bulk gaps in experiment, such as bismuthene, provides a versatile platform for topological devices. We propose a topological quantum dot (QD) device in bismuthene ribbon in which two planar magne