ترغب بنشر مسار تعليمي؟ اضغط هنا

Iron abundances from optical Fe III absorption lines in B-type stellar spectra

206   0   0.0 ( 0 )
 نشر من قبل Heather Thompson
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role of optical Fe III absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~ 3560 - 9200 A, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed Fe III spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY (plane-parallel, non-LTE), with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with FEROS, reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of Fe III transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.



قيم البحث

اقرأ أيضاً

167 - A. Lobel 2010
We develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(g f)-values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R=80,000) of Procyon (F5 IV-V) and {epsilon} Eri (K2 V) observed with large signal-to-noise (S/N) ratios of ~2,000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic over-estimation of the literature log(gf)-values with central line depths below 15 %. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, & Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf)-values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.
Neutral Fe lines in metal-poor stars yield conflicting abundances depending on whether and how deviations from local thermodynamic equilibrium (LTE) are considered. We have collected new high resolution and high signal-to-noise ultraviolet (UV) spect ra of three warm dwarf stars with [Fe/H] = -2.9 with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We locate archival UV spectra for three other warm dwarfs with [Fe/H] = -3.3, -2.2, and -1.6, supplemented with optical spectra for all six stars. We calculate stellar parameters using methods that are largely independent of the spectra, adopting broadband photometry, color-temperature relations, Gaia parallaxes, and assumed masses. We use the LTE line analysis code MOOG to derive Fe abundances from hundreds of Fe I and Fe II lines with wavelengths from 2290 to 6430 Angstroms. The [Fe/H] ratios derived separately from Fe I and Fe II lines agree in all six stars, with [Fe II/H] - [Fe I/H] ranging from +0.00 +/- 0.07 to -0.12 +/- 0.09 dex, when strong lines and Fe I lines with lower excitation potential < 1.2 eV are excluded. This constrains the extent of any deviations from LTE that may occur within this parameter range. While our result confirms non-LTE calculations for some warm, metal-poor dwarfs, it may not be generalizable to more metal-poor dwarfs, where deviations from LTE are predicted to be larger. We also investigate trends of systematically lower abundances derived from Fe I lines in the Balmer continuum region (3100-3700 Angstroms), and we conclude that no proposed explanation for this effect can fully account for the observations presently available.
The SDSS-III/APOGEE survey operated from 2011-2014 using the APOGEE spectrograph, which collects high-resolution (R~22,500), near-IR (1.51-1.70 microns) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data produ cts that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff, log g, [M/H], [alpha/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; within more limited ranges and at high S/N, it is smaller for some elemental abundances. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1-0.2 dex. Uncertainties may be larger at cooler temperatures (Teff<4000K). Access to the public data release and data products is described, and some guidance for using the data products is provided.
As part of the SLUGGS survey, we stack 1137 Keck DEIMOS spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal to noise ratios of $sim 90$ AA$^{-1}$. Besides the calcium trip let, we study weaker sodium, magnesium, titanium and iron lines as well as the H$alpha$ and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet--colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour--metallicity relation between galaxies. Two possible explanations for the colour--metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts being mass--metallicity relations.
Measurements of [Fe/H] and [$alpha$/Fe] can probe the minor merging history of a galaxy, providing a direct way to test the hierarchical assembly paradigm. While measurements of [$alpha$/Fe] have been made in the stellar halo of the Milky Way, little is known about detailed chemical abundances in the stellar halo of M31. To make progress with existing telescopes, we apply spectral synthesis to low-resolution DEIMOS spectroscopy (R $sim$ 2500 at 7000 Angstroms) across a wide spectral range (4500 Angstroms $<$ $lambda$ $<$ 9100 Angstroms). By applying our technique to low-resolution spectra of 170 giant stars in 5 MW globular clusters, we demonstrate that our technique reproduces previous measurements from higher resolution spectroscopy. Based on the intrinsic dispersion in [Fe/H] and [$alpha$/Fe] of individual stars in our combined cluster sample, we estimate systematic uncertainties of $sim$0.11 dex and $sim$0.09 dex in [Fe/H] and [$alpha$/Fe], respectively. We apply our method to deep, low-resolution spectra of 11 red giant branch stars in the smooth halo of M31, resulting in higher signal-to-noise per spectral resolution element compared to DEIMOS medium-resolution spectroscopy, given the same exposure time and conditions. We find $langle$[$alpha$/Fe]$rangle$ = 0.49 $pm$ 0.29 dex and $langle$[Fe/H]$rangle$ = 1.59 $pm$ 0.56 dex for our sample. This implies that---much like the Milky Way---the smooth halo of M31 is likely composed of disrupted dwarf galaxies with truncated star formation histories that were accreted early in the halos formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا