We use radio-frequency reflectometry to measure quasiparticle tunneling rates in the single-Cooper-pair-transistor. Devices with and without quasiparticle traps in proximity to the island are studied. A $10^2$ to $10^3$-fold reduction in the quasiparticle tunneling rate onto the island is observed in the case of quasiparticle traps. In the quasiparticle trap samples we also measure a commensurate decrease in quasiparticle tunneling rate off the island.
The parity modulation of the ground state of a superconducting island is a direct consequence of the presence of the Cooper pair condensate preferring an even number of charge carriers. The addition energy of an odd, unpaired quasiparticle equals to
the superconducting gap, $Delta$, suppressing single electron hopping in the low temperature limit. Controlling the quasiparticle occupation is of fundamental importance for superconducting qubits as single electron tunneling results in decoherence. In particular, topological quantum computation relies on the parity control and readout of Majorana bound states. Here we present parity modulation for the first time of a niobium titanite nitride (NbTiN) Cooper-pair transistor coupled to aluminium (Al) leads. We show that this circuit is compatible with the magnetic field requirement in the range of 100 mT of inducing topological superconductivity in spin-orbit coupled nanowires. Our observed parity lifetime exceeding 1 minute is several orders of magnitude higher than the required gate time of flux-controlled braiding of Majorana states. Our findings readily demonstrate that a NbTiN island can be parity-controlled and therefore provides a good platform for superconducting coherent circuits operating in a magnetic field.
The advent of quantum optical techniques based on superconducting circuits has opened new regimes in the study of the non-linear interaction of light with matter. Of particular interest has been the creation of non-classical states of light, which ar
e essential for continuous-variable quantum information processing, and could enable quantum-enhanced measurement sensitivity. Here we demonstrate a device consisting of a superconducting artificial atom, the Cooper pair transistor, embedded in a superconducting microwave cavity that may offer a path toward simple, continual production of non-classical photons. By applying a dc voltage to the atom, we use the ac Josephson effect to inject photons into the cavity. The backaction of the photons on single-Cooper-pair tunneling events results in a new regime of simultaneous quantum coherent transport of Cooper pairs and microwave photons. This single-pair Josephson laser offers great potential for the production of amplitude-squeezed photon states and a rich environment for the study of the quantum dynamics of nonlinear systems.
We have studied the microwave response of a single Cooper-pair transistor (CPT) coupled to a lumped-element microwave resonator. The resonance frequency of this circuit, $f_{r}$, was measured as a function of the charge $n_{g}$ induced on the CPT isl
and by the gate electrode, and the phase difference across the CPT, $phi_{B}$, which was controlled by the magnetic flux in the superconducting loop containing the CPT. The observed $f_{r}(n_{g},phi_{B})$ dependences reflect the variations of the CPT Josephson inductance with $n_{g}$ and $phi_{B}$ as well as the CPT excitation when the microwaves induce transitions between different quantum states of the CPT. The results are in excellent agreement with our simulations based on the numerical diagonalization of the circuit Hamiltonian. This agreement over the whole range of $n_{g}$ and $phi_{B}$ is unexpected, because the relevant energies vary widely, from 0.1K to 3K. The observed strong dependence $f_{r}(n_{g},phi_{B})$ near the resonance excitation of the CPT provides a tool for sensitive charge measurements.
This paper is devoted to an analysis of the experiment by Nakamura {it et al.} (Nature {bf 398}, 786 (1999)) on the quantum state control in Josephson junctions devices. By considering the relevant processes involved in the detection of the charge st
ate of the box and a realistic description of the gate pulse we are able to analyze some aspects of the experiment (like the amplitude of the measurement current) in a quantitative way.
We report a study of the magnetization density in the mixed state of the unconventional superconductor S2RuO4. On entering the superconducting state we find no change in the magnitude or distribution of the induced moment for a magnetic field of 1 Te
sla applied within the RuO2 planes. Our results are consistent with a spin-triplet Cooper pairing with spins lying in the basal plane. This is in contrast with similar experiments performed on conventional and high-Tc superconductors.