ترغب بنشر مسار تعليمي؟ اضغط هنا

Flux Line Lattice Melting and the Formation of a Coherent Quasiparticle Bloch State in the Ultraclean URu$_2$Si$_2$ Superconductor

161   0   0.0 ( 0 )
 نشر من قبل Takasada Shibauchi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find that in ultraclean heavy-fermion superconductor URu$_2$Si$_2$ ($T_{c0}=1.45$ K) a distinct flux line lattice melting transition with outstanding characters occurs well below the mean-field upper critical fields. We show that a very small number of carriers with heavy mass in this system results in exceptionally large thermal fluctuations even at subkelvin temperatures, which are witnessed by a sizable region of the flux line liquid phase. The uniqueness is further highlighted by an enhancement of the quasiparticle mean free path below the melting transition, implying a possible formation of a quasiparticle Bloch state in the periodic flux line lattice.



قيم البحث

اقرأ أيضاً

To investigate a mysterious superconducting state of URu_2Si_2 embedded in the so-called hidden order state, the lower critical field H_{c1} is precisely determined down to 55 mK for H || a and H || c. For this purpose, the positional dependence of t he local magnetic induction is measured on ultraclean single crystals (T_c = 1.4 K) with residual resistivity ratio exceeding 700. We find that the temperature dependence of H_{c1} significantly differs from that of any other superconductors. The whole H_{c1}(T) for H || a are well explained by the two superconducting gap structures with line and point nodes, which have been suggested by the recent thermal conductivity and specific heat measurements. On the other hand, for H || c, a change of slope with a distinct kink in H_{c1}(T), which cannot be accounted for by two gaps, is observed. This behavior for H || c sharply contrasts with the cusp behavior of H_{c1}(T) associated with a transition into another superconducting phase found in UPt_3 and U_{1-x}Th_xBe_{13}. The observed anomalous low-field diamagnetic response is possibly related to a peculiar vortex dynamics associated with chiral domains due to the multicomponent superconducting order parameter with broken time reversal symmetry.
The heavy fermion superconductor URu$_2$Si$_2$ is a candidate for chiral, time-reversal symmetry-breaking superconductivity with a nodal gap structure. Here, we microscopically visualized superconductivity and spatially inhomogeneous ferromagnetism i n URu$_2$Si$_2$. We observed linear-$T$ superfluid density, consistent with d-wave pairing symmetries including chiral d-wave, but did not observe the spontaneous magnetization expected for chiral d-wave. Local vortex pinning potentials had either four- or two-fold rotational symmetries with various orientations at different locations. Taken together, these data support a nodal gap structure in URu$_2$Si$_2$ and suggest that chirality either is not present or does not lead to detectable spontaneous magnetization.
At T$_0$ = 17.5 K an exotic phase emerges from a heavy fermion state in {ur}. The nature of this hidden order (HO) phase has so far evaded explanation. Formation of an unknown quasiparticle (QP) structure is believed to be responsible for the massive removal of entropy at HO transition, however, experiments and ab-initio calculations have been unable to reveal the essential character of the QP. Here we use femtosecond pump-probe time- and angle-resolved photoemission spectroscopy (tr-ARPES) to elucidate the ultrafast dynamics of the QP. We show how the Fermi surface is renormalized by shifting states away from the Fermi level at specific locations, characterized by vector $q_{<110>} = 0.56 pm 0.08$ {an}. Measurements of the temperature-time response reveal that upon entering the HO the QP lifetime in those locations increases from 42 fs to few hundred fs. The formation of the long-lived QPs is identified here as a principal actor of the HO.
Ultrasound velocity measurements of the unconventional superconductor CeCoIn_5 with extremely large Pauli paramagnetic susceptibility reveal an unusual structural transformation of the flux line lattice (FLL) in the vicinity of the upper critical fie ld. The transition field coincides with that at which heat capacity measurements reveal a second order phase transition. The lowering of the sound velocity at the transition is consistent with the collapse of the FLL tilt modulus and a crossover to quasi two-dimensional FLL pinning. These results provide a strong evidence that the high field state is the Fulde-Ferrel-Larkin-Ovchinikov phase, in which the order parameter is spatially modulated and has planar nodes aligned perpendicular to the vortices.
606 - X. C. Hong , X. L. Li , B. Y. Pan 2013
The thermal conductivity of iron-based superconductor CsFe$_2$As$_2$ single crystal ($T_c =$ 1.81 K) was measured down to 50 mK. A significant residual linear term $kappa_0/T$ = 1.27 mW K$^{-2}$ cm$^{-1}$ is observed in zero magnetic field, which is about 1/10 of the normal-state value in upper critical field $H_{c2}$. In low magnetic field, $kappa_0/T$ increases rapidly with field. The overall field dependence of $kappa_0/T$ for our CsFe$_2$As$_2$ (with residual resistivity $rho_0$ = 1.80 $muOmega$ cm) lies between the dirty KFe$_2$As$_2$ (with $rho_0$ = 3.32 $muOmega$ cm) and the clean KFe$_2$As$_2$ (with $rho_0$ = 0.21 $muOmega$ cm). These results strongly suggest nodal superconducting gap in CsFe$_2$As$_2$, similar to its sister compound KFe$_2$As$_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا