ﻻ يوجد ملخص باللغة العربية
We investigate the phase diagram of a two-species Bose-Hubbard model including a conversion term, by which two particles from the first species can be converted into one particle of the second species, and vice-versa. The model can be related to ultra-cold atom experiments in which a Feshbach resonance produces long-lived bound states viewed as diatomic molecules. The model is solved exactly by means of Quantum Monte Carlo simulations. We show than an inversion of population occurs, depending on the parameters, where the second species becomes more numerous than the first species. The model also exhibits an exotic incompressible Super-Mott phase where the particles from both species can flow with signs of superfluidity, but without global supercurrent. We present two phase diagrams, one in the (chemical potential, conversion) plane, the other in the (chemical potential, detuning) plane.
Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly correlated systems. In experiments realizing such mixtures in the quantum degenerate regime the temperature is a key parameter. In this work, we i
Regular pattern formation is ubiquitous in nature; it occurs in biological, physical, and materials science systems. Here we propose a set of experiments with ultracold atoms that show how to examine different types of pattern formation. In particula
In this Colloquium we discuss the anomalous kinetics of atoms in dissipative optical lattices, focusing on the ``Sisyphus laser cooling mechanism. The cooling scheme induces a friction force that decreases to zero for high atomic momentum, which in t
Experiments with cold atoms trapped in optical lattices offer the potential to realize a variety of novel phases but suffer from severe spatial inhomogeneity that can obscure signatures of new phases of matter and phase boundaries. We use a high temp
Infinite densities can describe the long-time properties of systems when ergodicity is broken and the equilibrium Boltzmann-Gibbs distribution fails. We here perform semiclassical Monte Carlo simulations of cold atoms in dissipative optical lattices