ﻻ يوجد ملخص باللغة العربية
The relativistic generalization of the Brownian motion is discussed. We show that the transformation property of the noise term is determined by requiring for the equilibrium distribution function to be Lorentz invariant, such as the Juttner distribution function. It is shown that this requirement generates an entanglement between the force term and the noise so that the noise itself should not be a covariant quantity.
In this article, we study the quantum field theoretic generalization of the Caldeira-Leggett model to describe the Brownian Motion in general curved space-time considering interactions between two scalar fields in a classical gravitational background
We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for t
In the frames of classical mechanics the generalized Langevin equation is derived for an arbitrary mechanical subsystem coupled to the harmonic bath of a solid. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smoluc
We investigate the classical Brownian motion of a particle in a two-dimensional noncommutative (NC) space. Using the standard NC algebra embodied by the sympletic Weyl-Moyal formalism we find that noncommutativity induces a non-vanishing correlation
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean h