ﻻ يوجد ملخص باللغة العربية
We calculate nuclear modification factors $R_{dAu}$, central-to-peripheral ratios, $R_{CP}$, and pseudorapidity asymmetries $Y_{Asym}$ in deuteron-gold collisions at $sqrt{s} = 200$ GeV in the framework of leading-order (LO) perturbative Quantum Chromodynamics. We use the Eskola-Kolhinen-Salgado (EKS), the Frankfurt-Guzey-Strikman (FGS) and the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions and the Albino-Kramer-Kniehl (AKK) fragmentation functions in our calculations. Results are compared to experimental data from the BRAHMS and STAR collaborations.
We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon
Nuclear gluon modifications are the least constrained component of current global fits to nuclear parton distributions, due to the inadequate constraining power of presently available experimental data from nuclear deep inelastic scattering and nucle
While current nuclear parton distribution functions (nPDFs) from global fits to experimental data are spatially homogeneous, many experimental observables in nucleus-nucleus collisions are presented in terms of centrality cuts. These cuts can be rela
We present a phenomenological approach (EPOS), based on the parton model, but going much beyond, and try to understand proton-proton and deuteron-gold collisions, in particular the transverse momentum results from all the four RHIC experiments. It tu
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton dist