ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of the magnetic state of a spin lattice on itinerant electron orbital phase

154   0   0.0 ( 0 )
 نشر من قبل Christoph Siegert
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatially extended localized spins can interact via indirect exchange interaction through Friedel oscillations in the Fermi sea. In arrays of localized spins such interaction can lead to a magnetically ordered phase. Without external magnetic field such a phase is well understood via a two-impurity Kondo model. Here we employ non-equilibrium transport spectroscopy to investigate the role of the orbital phase of conduction electrons on the magnetic state of a spin lattice. We show experimentally, that even tiniest perpendicular magnetic field can influence the magnitude of the inter-spin magnetic exchange.



قيم البحث

اقرأ أيضاً

Studies of Majorana bound states in semiconducting nanowires frequently neglect the orbital effect of magnetic field. Systematically studying its role leads us to several conclusions for designing Majoranas in this system. Specifically, we show that for experimentally relevant parameter values orbital effect of magnetic field has a stronger impact on the dispersion relation than the Zeeman effect. While Majoranas do not require a presence of only one dispersion subband, we observe that the size of the Majoranas becomes unpractically large, and the band gap unpractically small when more than one subband is filled. Since the orbital effect of magnetic field breaks several symmetries of the Hamiltonian, it leads to the appearance of large regions in parameter space with no band gap whenever the magnetic field is not aligned with the wire axis. The reflection symmetry of the Hamiltonian with respect to the plane perpendicular to the wire axis guarantees that the wire stays gapped in the topologically nontrivial region as long as the field is aligned with the wire.
Scattering of electrons by localized spins is the ultimate process enabling electrical detection and control of the magnetic state of a spin-doped material. At the molecular scale, this scattering is mediated by the electronic orbitals hosting the sp in. Here we report the selective excitation of a molecular spin by electrons tunneling through different molecular orbitals. Spatially-resolved tunneling spectra on iron porphyrins on Au(111) reveal that the inelastic spin excitation extends beyond the iron site. The inelastic features also change shape and symmetry along the molecule. Combining DFT simulations with a phenomenological scattering model, we show that the extension and lineshape variations of the inelastic signal are due to excitation pathways assisted by different frontier orbitals, each of them with a different degree of hybridization with the surface. By selecting the intramolecular site for electron injection, the relative weight of iron and pyrrole orbitals in the tunneling process is modified. In this way, the spin excitation mechanism, reflected by its spectral lineshape, changes depending on the degree of localization and energy alignment of the chosen molecular orbital.
199 - C. H. Yang , W. H. Lim , N. S. Lai 2012
Understanding interactions between orbital and valley quantum states in silicon nanodevices is crucial in assessing the prospects of spin-based qubits. We study the energy spectra of a few-electron silicon metal-oxide-semiconductor quantum dot using dynamic charge sensing and pulsed-voltage spectroscopy. The occupancy of the quantum dot is probed down to the single-electron level using a nearby single-electron transistor as a charge sensor. The energy of the first orbital excited state is found to decrease rapidly as the electron occupancy increases from N=1 to 4. By monitoring the sequential spin filling of the dot we extract a valley splitting of ~230 {mu}eV, irrespective of electron number. This indicates that favorable conditions for qubit operation are in place in the few-electron regime.
We find that quantum spin Hall (QSH) state can be obtained on a square-like or rectangular lattice, which is generalized from two-dimensional (2D) transition metal dichalcogenide (TMD) haeckelites. Band inversion is shown to be controled by hopping p arameters and results in Dirac cones with opposite or same vorticity when spin-orbit coupling (SOC) is not considered. Effective k$cdot$p model has been constructed to show the merging or annihilation of these Dirac cones, supplemented with the intuitive pseudospin texture. Similar to graphene based honeycomb lattice system, the QSH insulator is driven by SOC, which opens band gap at the Dirac cones. We employ the center evolution of hybrid Wannier function from Wilson-loop method, as well as the direct integral of Berry curvature, to identify the $Z_2$ number. We hope our detailed analysis will stimulate further efforts in searching for QSH insulators in square or rectangular lattice, in addition to the graphene based honeycomb lattice.
217 - Shuai Wang , Jing Zhong , 2021
Magnetic nanoparticles (MNPs) have excellent magnetic-temperature characteristic. However, current temperature measurement based on MNPs is interfered by concentration. Utilizing the electron spin resonance (ESR), we propose a highly sensitive temper ature measurement method without concentration coupling. The anisotropic field is affected by temperature, thus affecting the g-value. The influence of the MNP concentration, size, and the data analysis method on temperature estimation are studied. The optimal temperature sensitivity is achieved with 15-nm MNPs while Gaussian smoothing method allows an optimal accuracy at Fe concentration of 5 mg/ml with a root mean squared error of 0.07 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا