ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability domains of actin genes and genomic evolution

127   0   0.0 ( 0 )
 نشر من قبل Enrico Carlon
 تاريخ النشر 2007
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In eukaryotic genes the protein coding sequence is split into several fragments, the exons, separated by non-coding DNA stretches, the introns. Prokaryotes do not have introns in their genome. We report the calculations of stability domains of actin genes for various organisms in the animal, plant and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e. before introns insertion. Common stability boundaries are found in evolutionary distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general boundaries correspond with introns positions of vertebrates and other animals actins, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae and animals have introns in positions separated by one nucleotide only, which identifies a hot-spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamic driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for introns insertion in plants and animals.



قيم البحث

اقرأ أيضاً

157 - Yoshitake Sakae 2015
We combined the genetic crossover, which is one of the operations of genetic algorithm, and replica-exchange method in parallel molecular dynamics simulations. The genetic crossover and replica-exchange method can search the global conformational spa ce by exchanging the corresponding parts between a pair of conformations of a protein. In this study, we applied this method to an $alpha$-helical protein, Trp-cage mini protein, which has 20 amino-acid residues. The conformations obtained from the simulations are in good agreement with the experimental results.
Identifying protein-protein interactions is crucial for a systems-level understanding of the cell. Recently, algorithms based on inverse statistical physics, e.g. Direct Coupling Analysis (DCA), have allowed to use evolutionarily related sequences to address two conceptually related inference tasks: finding pairs of interacting proteins, and identifying pairs of residues which form contacts between interacting proteins. Here we address two underlying questions: How are the performances of both inference tasks related? How does performance depend on dataset size and the quality? To this end, we formalize both tasks using Ising models defined over stochastic block models, with individual blocks representing single proteins, and inter-block couplings protein-protein interactions; controlled synthetic sequence data are generated by Monte-Carlo simulations. We show that DCA is able to address both inference tasks accurately when sufficiently large training sets are available, and that an iterative pairing algorithm (IPA) allows to make predictions even without a training set. Noise in the training data deteriorates performance. In both tasks we find a quadratic scaling relating dataset quality and size that is consistent with noise adding in square-root fashion and signal adding linearly when increasing the dataset. This implies that it is generally good to incorporate more data even if its quality is imperfect, thereby shedding light on the empirically observed performance of DCA applied to natural protein sequences.
Biophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, min imal model: bivalent red and green transcription factors bind to cognate sites in runs of beads (chromatin) to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster -- red with red, green with green, but rarely red with green -- to give structures reminiscent of transcription factories. Binding of just two transcription factors (or proteins) to active and inactive regions of human chromosomes yields rosettes, topological domains, and contact maps much like those seen experimentally. This emergent bridging-induced attraction proves to be a robust, simple, and generic force able to organize interphase chromosomes at all scales.
538 - Yoshitake Sakae 2015
Many proteins carry out their biological functions by forming the characteristic tertiary structures. Therefore, the search of the stable states of proteins by molecular simulations is important to understand their functions and stabilities. However, getting the stable state by conformational search is difficult, because the energy landscape of the system is characterized by many local minima separated by high energy barriers. In order to overcome this difficulty, various sampling and optimization methods for conformations of proteins have been proposed. In this study, we propose a new conformational search method for proteins by using genetic crossover and Metropolis criterion. We applied this method to an $alpha$-helical protein. The conformations obtained from the simulations are in good agreement with the experimental results.
Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred ef fective Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we use lattice protein model (LP) to benchmark those inverse statistical approaches. We build MSA of highly stable sequences in target LP structures, and infer the effective pairwise Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce many important aspects of true LP structures and energetics. Careful analysis reveals that effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energetics of the native structure but also on competing folds; in particular, the coupling values reflect both positive design (stabilization of native conformation) and negative design (destabilization of competing folds). In addition to providing detailed structural information, the inferred Potts models used as protein Hamiltonian for design of new sequences are able to generate with high probability completely new sequences with the desired folds, which is not possible using independent-site models. Those are remarkable results as the effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the competition between the folds. Our findings elucidate the reasons for the success of inverse approaches to the modelling of proteins from sequence data, and their limitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا