ﻻ يوجد ملخص باللغة العربية
One of the primary goals of modern condensed matter physics is to elucidate the nature of the ground state in various electronic systems. Many correlated electron materials, such as high temperature superconductors, geometrically frustrated oxides, and low-dimensional magnets are still the objects of fruitful study because of the unique properties which arise due to poorly understood many-body effects. Heavy fermion metals - materials which have high effective electron masses due to these effects - represent a class of materials with exotic properties, such as unusual magnetism, unconventional superconductivity, and hidden order parameters. The heavy fermion superconductor URu2Si2 has held the attention of physicists for the last two decades due to the presence of a hidden order phase below 17.5 K. Neutron scattering measurements indicate that the ordered moment is 0.03 $mu_{B}$, much too small to account for the large heat capacity anomaly at 17.5 K. We present recent neutron scattering experiments which unveil a new piece of this puzzle - the spin excitation spectrum above 17.5 K exhibits well-correlated, itinerant-like spin excitations up to at least 10 meV emanating from incommensurate wavevectors. The gapping of these excitations corresponds to a large entropy release and explains the reduction in the electronic specific heat through the transition.
We present a study of transport properties of the heavy fermion URu$_2$Si$_2$ in pulsed magnetic field. The large Nernst response of the hidden order state is found to be suppressed when the magnetic field exceeds 35 T. The combination of resistivity
Quantum materials are epitomized by the influence of collective modes upon their macroscopic properties. Relatively few examples exist, however, whereby coherence of the ground-state wavefunction directly contributes to the conductivity. Notable exam
We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu$_2$Si$_2$. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order
At T$_0$ = 17.5 K an exotic phase emerges from a heavy fermion state in {ur}. The nature of this hidden order (HO) phase has so far evaded explanation. Formation of an unknown quasiparticle (QP) structure is believed to be responsible for the massive
The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu$_2$Si$_2$. In this paper we discuss its nature and the strong constraints it places on current theories of the hidden order. In the hastatic theory such a