ترغب بنشر مسار تعليمي؟ اضغط هنا

Design Considerations for the Next Generation of Atmospheric Imaging Cherenkov Telescopes

119   0   0.0 ( 0 )
 نشر من قبل Viatcheslav Bugaev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. V. Bugaev




اسأل ChatGPT حول البحث

We estimate the limiting angular resolution and detection area for an array of 3 large-aperture Imaging Atmospheric Cherenkov Telescopes. We consider an idealized IACT system in order to understand the limitations imposed by the intrinsic nature of the atmospheric showers and geometry of the detector configuration. The idealization includes the assumptions of a perfect optical system and the absence of the night sky background with the goal of finding the optimum camera geometry and array configuration independent of detailed assumptions about the telescope design. The showers are simulated using the ALTAI code for the altitude of 2700 m corresponding to one of possible future sites for a new northern-hemisphere array. The optimal design depends on the target energy range; for each energy we vary both the cell length (telescope spacing) and the image processing parameters in order to maximize the signal-to-noise ratio. We then present the resulting values of the detection area and the angular resolution for this energy dependent optimization. We discuss the dependence of these quantities on the field of view of the telescopes and pixel size of the camera.



قيم البحث

اقرأ أيضاً

Ground-based gamma-ray astronomy experienced a major boost with the advent of the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) in the past decade. Photons of energies >~ 0.1 TeV are a very useful tool in the study of several fundamental physics topics, which have become an important part of the research program of all major IACTs. A review of some recent results in the field is presented.
A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over t he current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the image shape and transmits this information along with a GPS time stamp to the array-level trigger (L3) at a rate of 10 MHz via a fiber optic link. The FPGA-based event analysis on L3 searches for coincident time-stamps from multiple telescopes and carries out a comparison of the image parameters against a look-up table at a rate of 10 kHz. A test of the single-telescope trigger was carried out in spring 2009 on one VERITAS telescope.
Intergalactic space is believed to contain non-zero magnetic fields (the Intergalactic Magnetic Field: IGMF) which at scales of Mpc would have intensities below $10^{-9}$ G. Very high energy (VHE $>$100 GeV) gamma rays coming from blazars can produce e$^+$e$^-$ pairs when interacting with the Extragalactic Background Light (EBL) and the Cosmic Microwave Background, generating an electromagnetic cascade of Mpc scale. The IGMF may produce a detectable broadening of the emission beam that could lead to important constrains both on the IGMF intensity and its coherence length. Using the Monte Carlo-based Elmag code, we simulate the electromagnetic cascade corresponding to two detected TeV sources: PKS 2155-304 visible from the South and H1426+428 visible from the North. Assuming an EBL model and intrinsic spectral properties of the sources we obtain the spectral and angular distribution of photons when they arrive at Earth. We include the response of the next generation Cherenkov telescopes by using simplified models for CTA (Cherenkov Telescope Array)-south and CTA-north based on a full simulation of each array performance. Combining the instrument properties with the simulated source fluxes, we calculate the telescope point spread function for null and non-null IGMF intensities and develop a method to test the statistical feasibility of detecting IGMF imprints by comparing the resulting angular distributions. Our results show that for the analysed source PKS 2155-304 corresponding to the southern site, CTA should be able to detect IGMF with intensities stronger than 10$^{-14.5}$G within an observation time of $sim$100 hours.
465 - E. Moulin 2009
The annihilations of WIMPs produce high energy gamma-rays in the final state. These high energy gamma-rays may be detected by imaging atmospheric Cherenkov telescopes (IACTs). Amongst the plausible targets are the Galactic Center, the centre of galax y clusters, dwarf Sphreroidal galaxies and substructures in Galactic haloes. I will review on the recent results from observations of ongoing IACTs.
107 - I. de la Calle 2001
Cherenkov radiation produced in Extensive Air Showers shows a net polarization. This article discusses its properties and physical origin, and proposes an arrangement of polarizers potentially useful for Imaging Atmospheric Cherenkov Telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا