ﻻ يوجد ملخص باللغة العربية
TmGa$_{3}$ (AuCu$_3$ structure) undergoes two phase transitions, an antiferroquadrupolar transition at $sim$ 4.29 K and long-range antiferromagnetic ordering at $sim$ 4.26 K. Due to the close vicinity of the two phase transitions, TmGa$_3$ offers an interesting system to study the interplay of charge and magnetic degrees of freedom. In order to understand this interplay we have performed inelastic neutron scattering experiments on TmGa$_{3}$ in the paramagnetic regime ($T >$ 5 K) to redetermine the crystal electric field level scheme. By fitting our spectra at various temperatures we obtain a new crystal field level scheme with Lea, Leask and Wolf parameters of $x_{rm LLW}$ = -0.44(2) and $W$ = -0.222(2) K. The total crystal field splitting at 5K amounts to $sim$ 2.3 meV, about an order of magnitude less than found previously, but in good agreement with the splitting extrapolated from the related ErGa$_3$ system. Our analysis yields a $Gamma_{2}$ singlet as the crystal field ground state followed closely by a (nonmagnetic) $Gamma_{1}$ singlet at 0.009 meV. The next excited states are a $Gamma_{5}^{(2)}$ triplet at $sim$0.5 meV, which is almost degenerate to a $Gamma_{4}$ doublet. This level scheme is adverse to previous findings. Subsequent analysis of the magnetisation along several crystallographic directions and the temperature dependant susceptibility as well as of the magnetic contribution to the specific heat are consistent with our new crystal field parameters. Implications for the antiferroquadrupolar and the antiferromagnetic transition are discussed.
Nonresonant inelastic x-ray scattering (NIXS) has been performed on single crystals of UO$_2$ to study the direction dependence of higher-order-multipole scattering from the uranium $O_{4,5}$ edges (90--110 eV). By comparing the experimental results
The $4f$-electron system YbAl$_3$C$_3$ with a non-magnetic spin-dimer ground state has been studied by neutron diffraction in an applied magnetic field. A long-range magnetic order involving both ferromagnetic and antiferromagnetic components has bee
We have measured the spin-wave spectrum of the half-doped bilayer manganite Pr(Ca,Sr)2Mn2O7 in its spin, charge, and orbital ordered phase. The measurements, which extend throughout the Brillouin zone and cover the entire one-magnon spectrum, are com
We have succeeded in establishing the crystal-field ground state of CeRu2Al10, an orthorhombic intermetallic compound recently identified as a Kondo insulator. Using polarization dependent soft x-ray absorption spectroscopy at the Ce M4,5 edges, toge
We present local probe results on the honeycomb lattice antiferromagnet Ba3CuSb2O9. Muon spin relaxation measurements in zero field down to 20 mK show unequivocally that there is a total absence of spin freezing in the ground state. Sb NMR measuremen