ﻻ يوجد ملخص باللغة العربية
We consider the joint distribution of real and imaginary parts of eigenvalues of random matrices with independent entries with mean zero and unit variance. We prove the convergence of this distribution to the uniform distribution on the unit disc without assumptions on the existence of a density for the distribution of entries. We assume that the entries have a finite moment of order larger than two and consider the case of sparse matrices. The results are based on previous work of Bai, Rudelson and the authors extending those results to a larger class of sparse matrices.
The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergen
We extend the random characteristics approach to Wigner matrices whose entries are not required to have a normal distribution. As an application, we give a simple and fully dynamical proof of the weak local semicircle law in the bulk.
In the first part of this article, we proved a local version of the circular law up to the finest scale $N^{-1/2+ e}$ for non-Hermitian random matrices at any point $z in C$ with $||z| - 1| > c $ for any $c>0$ independent of the size of the matrix. U
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.