ﻻ يوجد ملخص باللغة العربية
We survey barrier penetration by quantum tunneling for four cases: nonrelativistic point particles, scalar fields, relativistic point particles, and DBI branes. We examine two novel features that arise for DBI brane tunneling: the rate can sometimes increase as the barrier gets higher; and the instanton wrinkles. We show that these features can be understood as the effect of the quantum sea of virtual brane-antibrane pairs. This sea exponentially augments the decay rate, with possible cosmological consequences.
We study a string theory inspired model for hybrid inflation in the context of a brane-antibrane system partially compactified on a compact submanifold of (a caricature of) a Calabi-Yau manifold. The interbrane distance acts as the inflaton, whereas
After reviewing the supertubes and super brane-antibrane systems in the context of matrix model, we look for more general higher-dimensional configurations. For D3-bar{D3}, we find a non-trivial configuration with E cdot B not equal to 0 and describe
Generic classes of string compactifications include ``brane throats emanating from the compact dimensions and separated by effective potential barriers raised by the background gravitational fields. The interaction of observers inside different throa
We show that a model based on a D3-brane--anti-D3-brane system at finite temperature, proposed previously as a microscopic description of the non-rotating black threebrane of type IIB supergravity arbitrarily far from extremality, can also successful
We discuss the worldvolume description of intersecting D-branes, including the metric on the moduli space of deformations. We impose a choice of static gauge that treats all the branes on an equal footing and describes the intersection of D-branes as