ﻻ يوجد ملخص باللغة العربية
I review the basic processes that may be used to develop a chemical evolutionary sequence for low-mass starless cores. I highlight observational results from the Arizona Radio Observatory-Green Bank Survey. Observations were performed with the SMT 10-m, ARO 12-m, and GBT 100-m toward a sample of 25 nearby (D < 400 pc) low-mass starless cores which have radiative transfer models of the 850 $mu$m emission and observed SED (160 - 1300 um). The cores were observed in the lines of NH3 (1,1) and (2,2), o-NH2D 1_{11} - 1_{01}, C2S 1_2 - 2_1, C3S 4 - 3, HCN 1 - 0, HC5N 9 - 8, HC7N 21 - 20, C18O and C17O 2 - 1, and p-H2CO 1_{01} - 0_{00}.
We report the identification of a sample of potential High-Mass Starless Cores (HMSCs). The cores were discovered by comparing images of the fields containing candidate High-Mass Protostellar Objects (HMPOs) at 1.2mm and mid-infrared (8.3um; MIR) wav
We used the new IRAM 30-m FTS backend to perform an unbiased ~15 GHz wide survey at 3 mm toward the Pipe Nebula young diffuse starless cores. We found an unexpectedly rich chemistry. We propose a new observational classification based on the 3 mm mol
We carry out an ALMA $rm N_2D^+$(3-2) and 1.3~mm continuum survey towards 32 high mass surface density regions in seven Infrared Dark Clouds with the aim of finding massive starless cores, which may be the initial conditions for the formation of mass
We have undertaken a survey of N2H+ and N2D+ towards 31 low-mass starless cores using the IRAM 30m telescope. Our main objective has been to determine the abundance ratio of N2D+ and N2H+ towards the nuclei of these cores and thus to obtain estimates
We develop a method of analyzing radio frequency spectral line observations to derive data on the temperature, density, velocity, and molecular abundance of the emitting gas. The method incorporates a radiative transfer code with a new technique for