ﻻ يوجد ملخص باللغة العربية
We use the usual method of Schwarzschild to construct self-consistent solutions for the triaxial de Zeeuw & Carollo (1996) models with central density cusps. ZC96 models are triaxial generalisations of spherical $gamma$-models of Dehnen whose densities vary as $r^{-gamma}$ near the center and $r^{-4}$ at large radii and hence, possess a central density core for $gamma=0$ and cusps for $gamma > 0$. We consider four triaxial models from ZC96, two prolate triaxials: $(p, q) = (0.65, 0.60)$ with $gamma = 1.0$ and 1.5, and two oblate triaxials: $(p, q) = (0.95, 0.60)$ with $gamma = 1.0$ and 1.5. We compute 4500 orbits in each model for time periods of $10^{5} T_{D}$. We find that a large fraction of the orbits in each model are stochastic by means of their nonzero Liapunov exponents. The stochastic orbits in each model can sustain regular shapes for $sim 10^{3} T_{D}$ or longer, which suggests that they diffuse slowly through their allowed phase-space. Except for the oblate triaxial models with $gamma =1.0$, our attempts to construct self-consistent solutions employing only the regular orbits fail for the remaining three models. However, the self-consistent solutions are found to exist for all models when the stochastic and regular orbits are treated in the same way because the mixing-time, $sim10^{4} T_{D}$, is shorter than the integration time, $10^{5} T_{D}$. Moreover, the ``fully-mixed solutions can also be constructed for all models when the stochastic orbits are fully mixed at 15 lowest energy shells. Thus, we conclude that the self-consistent solutions exist for our selected prolate and oblate triaxial models with $gamma = 1.0$ and 1.5.
We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter halos. Self-consistent solutions by means of the standard orbital superposition technique introduced by Schwarzschild were found in
Galactic disks in triaxial dark matter halos become deformed by the elliptical potential in the plane of the disk in such a way as to counteract the halo ellipticity. We develop a technique to calculate the equilibrium configuration of such a disk in
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter
(Abridged) This paper studies chaotic orbit ensembles evolved in triaxial generalisations of the Dehnen potential which have been proposed to model ellipticals with a strong density cusp that manifest significant deviations from axisymmetry. Allowanc
A key starting assumption in many classical interatomic potential models for materials is a site energy decomposition of the potential energy surface into contributions that only depend on a small neighbourhood. Under a natural stability condition, w