ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress of GaAsP HPD development for the MAGIC telescope project

254   0   0.0 ( 0 )
 نشر من قبل TakaYuki Saito
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Y. Saito




اسأل ChatGPT حول البحث

Today the Hybrid Photon Detector (HPD) is one of the few low light level (LLL) sensors that can provide an excellent single and multiple photoelectron (ph.e.) amplitude resolution. The recently developed HPDs for the MAGIC telescope project with a GaAsP photocathode, namely the R9792U-40, provide a peak quantum efficiency (QE) of more than 50% and a pulse width of ~2 nsec. In addition, the afterpulsing rate of these tubes is very low compared to that of conventional photomultiplier tubes (PMTs), i.e. the value is ~300 times lower. Photocathode aging measurements showed life time of more than 10 years under standard operating conditions of the Cherenkov Telescopes. Here we want to report on the recent progress with the above mentioned HPDs.



قيم البحث

اقرأ أيضاً

The foreseen luminosity upgrade for the LHC (a factor of 5-10 more in peak luminosity by 2021) poses serious constraints on the technology for the ATLAS tracker in this High Luminosity era (HL-LHC). In fact, such luminosity increase leads to increase d occupancy and radiation damage of the tracking detectors. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project was established comprising 17 institutes and more than 80 scientists. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edge designs to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. In the following I will present results from the group, concerning mainly irradiated-devices performance, together with studies for new sensors, including detailed simulations.
Constraint Satisfaction Problems (CSPs) play a central role in many applications in Artificial Intelligence and Operations Research. In general, solving CSPs is NP-complete. The structure of CSPs is best described by hypergraphs. Therefore, various f orms of hypergraph decompositions have been proposed in the literature to identify tractable fragments of CSPs. However, also the computation of a concrete hypergraph decomposition is a challenging task in itself. In this paper, we report on recent progress in the study of hypergraph decompositions and we outline several directions for future research.
A radiation detector based on plasma display panel technology, which is the principal component of plasma television displays is presented. Plasma Panel Sensor (PPS) technology is a variant of micropattern gas radiation detectors. The PPS is conceive d as an array of sealed plasma discharge gas cells which can be used for fast response (O(5ns) per pixel), high spatial resolution detection (pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing particles. The PPS is assembled from non-reactive, intrinsically radiation-hard materials: glass substrates, metal electrodes and inert gas mixtures. We report on the PPS development program, including simulations and design and the first laboratory studies which demonstrate the usage of plasma display panels in measurements of cosmic ray muons, as well as the expansion of experimental results on the detection of betas from radioactive sources.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fiber s will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
We present recent results of the NNPDF collaboration on a full DIS analysis of Parton Distribution Functions (PDFs). Our method is based on the idea of combining a Monte Carlo sampling of the probability measure in the space of PDFs with the use of n eural networks as unbiased universal interpolating functions. The general structure of the project and the features of the fit are described and compared to those of the traditional approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا