ترغب بنشر مسار تعليمي؟ اضغط هنا

A Magnetohydrodynamic Boost for Relativistic Jets

123   0   0.0 ( 0 )
 نشر من قبل Yosuke Mizuno
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yosuke Mizuno




اسأل ChatGPT حول البحث

We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet ($V^z_j$) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A ``poloidal magnetic field ($B^z$), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong ``toroidal magnetic field ($B^y$), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Overall, the acceleration efficiency in the ``poloidal case is less than that of the ``toroidal case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).



قيم البحث

اقرأ أيضاً

Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.
535 - Feng Yuan 2009
Episodic ejection of plasma blobs have been observed in many black hole systems. While steady, continuous jets are believed to be associated with large-scale open magnetic fields, what causes the episodic ejection of blobs remains unclear. Here by an alogy with the coronal mass ejection on the Sun, we propose a magnetohydrodynamical model for episodic ejections from black holes associated with the closed magnetic fields in an accretion flow. Shear and turbulence of the accretion flow deform the field and result in the formation of a flux rope in the disk corona. Energy and helicity are accumulated and stored until a threshold is reached. The system then loses its equilibrium and the flux rope is thrust outward by the magnetic compression force in a catastrophic way. Our calculations show that for parameters appropriate for the black hole in our Galactic center, the plasmoid can attain relativistic speeds in about 35 minutes.
356 - D. Rindori 2021
We study a relativistic fluid with longitudinal boost invariance in a quantum-statistical framework as an example of a solvable non-equilibrium problem. For the free quantum field, we calculate the exact form of the expectation values of the stress-e nergy tensor and the entropy current. For the stress-energy tensor, we find that a finite value can be obtained only by subtracting the vacuum of the density operator at some fixed proper time tau_0. As a consequence, the stress-energy tensor acquires non-trivial quantum corrections to the classical free-streaming form.
Velocities close to the speed of light are a robust observational property of the jets observed in microquasars and AGNs, and are expected to be behind much of the phenomenology of GRBs. Yet, the mechanism boosting relativistic jets to such large Lor entz factors is still essentially unknown. Building on recent general-relativistic, multidimensional simulations of progenitors of short GRBs, we discuss a new effect in relativistic hydrodynamics which can act as an efficient booster in jets. This effect is purely hydrodynamical and occurs when large velocities tangential to a discontinuity are present in the flow, yielding Lorentz factors $Gamma sim 10^2-10^3$ or larger in flows with moderate initial Lorentz factors. Although without a Newtonian counterpart, this effect can be explained easily through the most elementary hydrodynamical flow: i.e., a relativistic Riemann problem.
Rotating magnetized compact objects and their accretion discs can generate strong toroidal magnetic fields driving highly magnetized plasmas into relativistic jets. Of significant concern, however, has been that a strong toroidal field in the jet sho uld be highly unstable to the non-axisymmetric helical kink (screw) $m=1$ mode leading to rapid disruption. In addition, a recent concern has been that the jet formation process itself may be unstable due to the accretion of non-dipolar magnetic fields. We describe large-scale fully three-dimensional global general relativistic magnetohydrodynamic simulations of rapidly rotating, accreting black holes producing jets. We study both the stability of the jet as it propagates and the stability of the jet formation process during accretion of dipolar and quadrupolar fields. For our dipolar model, despite strong non-axisymmetric disc turbulence, the jet reaches Lorentz factors of $Gammasim 10$ with opening half-angle $theta_jsim 5^circ$ at $10^3$ gravitational radii without significant disruption or dissipation with only mild substructure dominated by the $m=1$ mode. On the contrary, our quadrupolar model does not produce a steady relativistic ($Gammagtrsim 3$) jet due to mass-loading of the polar regions caused by unstable polar fields. Thus, if produced, relativistic jets are roughly stable structures and may reach up to an external shock with strong magnetic fields. We discuss the astrophysical implications of the accreted magnetic geometry playing such a significant role in relativistic jet formation, and we outline avenues for future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا