ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Phase Transitions in One-dimensional Strongly Attractive Three-Component Ultracold Fermions

177   0   0.0 ( 0 )
 نشر من قبل Murray Batchelor
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nature of trions, pairing and quantum phase transitions in one-dimensional strongly attractive three-component ultracold fermions in external fields. Exact results for the groundstate energy, critical fields, magnetization and phase diagrams are obtained analytically from the Bethe ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of trions, bound pairs, a normal Fermi liquid and four mixtures of these states. Particularly, a smooth phase transition from a trionic phase into a pairing phase occurs as the highest hyperfine level separates from the two lower energy levels. In contrast, there is a smooth phase transition from the trionic phase into a normal Fermi liquid as the lowest level separates from the two higher levels.



قيم البحث

اقرأ أيضاً

Paired states, trions and quarteting states in one-dimensional SU(4) attractive fermions are investigated via exact Bethe ansatz calculations. In particular, quantum phase transitions are identified and calculated from the quarteting phase into norma l Fermi liquid, trionic states and spin-2 paired states which belong to the universality class of linear field-dependent magnetization in the vicinity of critical points. Moreover, unified exact results for the ground state energy, chemical potentials and complete phase diagrams for isospin $S=1/2, 1, 3/2$ attractive fermions with external fields are presented. Also identified are the magnetization plateaux of $m^z=M_s/3$ and $m^z=2M_s/3$, where $M_s$ is the magnetization saturation value. The universality of finite-size corrections and collective dispersion relations provides a further test ground for low energy effective field theory.
109 - P. Karpov , S. Brazovskii 2018
Most common types of symmetry breaking in quasi-one-dimensional electronic systems possess a combined manifold of states degenerate with respect to both the phase $theta$ and the amplitude $A$ sign of the order parameter $Aexp(itheta)$. These degrees of freedom can be controlled or accessed independently via either the spin polarization or the charge densities. To understand statistical properties and the phase diagram in the course of cooling under the controlled parameters, we present here an analytical treatment supported by Monte Carlo simulations for a generic coarse-grained two-fields model of XY-Ising type. The degeneracies give rise to two coexisting types of topologically nontrivial configurations: phase vortices and amplitude kinks -- the solitons. In 2D, 3D states with long-range (or BKT type) orders, the topological confinement sets in at a temperature $T=T_1$ which binds together the kinks and unusual half-integer vortices. At a lower $T=T_2$, the solitons start to aggregate into walls formed as rods of amplitude kinks which are ultimately terminated by half-integer vortices. With lowering $T$, the walls multiply passing sequentially across the sample. The presented results indicate a possible physical realization of a peculiar system of half-integer vortices with rods of amplitude kinks connecting their cores. Its experimental realization becomes feasible in view of recent successes in real space observations and even manipulations of domain walls in correlated electronic systems.
Close-packed, classical dimer models on three-dimensional, bipartite lattices harbor a Coulomb phase with power-law correlations at infinite temperature. Here, we discuss the nature of the thermal phase transition out of this Coulomb phase for a vari ety of dimer models which energetically favor crystalline dimer states with columnar ordering. For a family of these models we find a direct thermal transition from the Coulomb phase to the dimer crystal. While some systems exhibit (strong) first-order transitions in correspondence with the Landau-Ginzburg-Wilson paradigm, we also find clear numerical evidence for continuous transitions. A second family of models undergoes two consecutive thermal transitions with an intermediate paramagnetic phase separating the Coulomb phase from the dimer crystal. We can describe all of these phase transitions in one unifying framework of candidate field theories with two complex Ginzburg-Landau fields coupled to a U(1) gauge field. We derive the symmetry-mandated Ginzburg-Landau actions in these field variables for the various dimer models and discuss implications for their respective phase transitions.
We consider quantum Heisenberg ferro- and antiferromagnets on the square lattice with exchange anisotropy of easy-plane or easy-axis type. The thermodynamics and the critical behaviour of the models are studied by the pure-quantum self-consistent har monic approximation, in order to evaluate the spin and anisotropy dependence of the critical temperatures. Results for thermodynamic quantities are reported and comparison with experimental and numerical simulation data is made. The obtained results allow us to draw a general picture of the subject and, in particular, to estimate the value of the critical temperature for any model belonging to the considered class.
We discuss recent results on the relation between the strongly interacting one-dimensional Bose gas and a gas of ideal particles obeying nonmutual generalized exclusion statistics (GES). The thermodynamic properties considered include the statistical profiles, the specific heat and local pair correlations. In the strong coupling limit $gamma to infty$, the Tonks-Girardeau gas, the equivalence is with Fermi statistics. The deviation from Fermi statistics during boson fermionization for finite but large interaction strength $gamma$ is described by the relation $alpha approx 1 - 2/gamma$, where $alpha$ is a measure of the GES. This gives a quantitative description of the fermionization process. In this sense the recent experimental measurement of local pair correlations in a 1D Bose gas of $^{87}$Rb atoms also provides a measure of the deviation of the GES parameter $alpha$ away from the pure Fermi statistics value $alpha=1$. Other thermodynamic properties, such as the distribution profiles and the specific heat, are also sensitive to the statistics. They also thus provide a way of exploring fractional statistics in the strongly interacting 1D Bose gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا