ترغب بنشر مسار تعليمي؟ اضغط هنا

The Active Mirror Control of the MAGIC Telescope

111   0   0.0 ( 0 )
 نشر من قبل Adrian Biland
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Biland




اسأل ChatGPT حول البحث

One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.



قيم البحث

اقرأ أيضاً

KAGRA is a 3-km cryogenic interferometric gravitational wave telescope located at an underground site in Japan. In order to achieve its target sensitivity, the relative positions of the mirrors of the interferometer must be finely adjusted with attac hed actuators. We have developed a model to simulate the length control loops of the KAGRA interferometer with realistic suspension responses and various noises for mirror actuation. Using our model, we have designed the actuation parameters to have sufficient force range to acquire lock as well as to control all the length degrees of freedom without introducing excess noise.
211 - C.C. Hsu , A. Dettlaff , D. Fink 2007
The MAGIC 17m diameter Cherenkov telescope will be upgraded with a second telescope within the year 2007. The camera of MAGIC-II will include several new features compared to the MAGIC-I camera. Photomultipliers with the highest available photon coll ection efficiency have been selected. A modular design allows easier access and flexibility to test new photodetector technologies. The camera will be uniformly equipped with 0.1 degree diamter pixels, which allows the use of an increased trigger area. Finally, the overall signal chain features a large bandwidth to retain the shape of the very fast Cherenkov signals.
The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed at Mount Paranal in the Atacama desert, Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. This paper will focus on the distributed control system of active optics based on CAN bus and PIC microcontrollers. Both axial and radial pads of the primary mirror will be equipped by astatic lever supports controlled by microcontroller units. The same CAN bus + microcontroller boards approach will be used for the temperature acquisition modules.
359 - D. Bastieri 2007
The MAGIC Collaboration is building a second telescope, MAGIC II, improving the design of the current MAGIC Telescope. MAGIC II is being built at 85 m of distance from MAGIC I, and will also feature a huge reflecting surface of ~240 m$^2$ of area. On e of the improvement is the design for the mirror of MAGIC II, that are lighter and larger, being square of 1 m of side and weighting around 15 kg. For the development and production of the new mirrors, two different techniques, both reliable and affordable in price, were selected: the diamond milling of aluminium surfaces and the cold slumping of thin glass panes. As tests for the second one are still ongoing, we present a description of the diamond milling technique, and its application and performance to the produced mirrors.
244 - J. Rico , M. Rissi , P. Bordas 2007
We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, span ning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا