ﻻ يوجد ملخص باللغة العربية
We introduce a concept that uses detuned arm cavities to increase the shot noise limited sensitivity of LIGO without increasing the light power inside the arm cavities. Numerical simulations show an increased sensitivity between 125 and 400 Hz, with a maximal improvement of about 80% around 225 Hz, while the sensitivity above 400Hz is decreased. Furthermore our concept is found to give a sensitivity similar to that of a conventional RSE configuration with a Signal-Recycling mirror of moderate reflectivity. In the near future detuned arm cavities might be a beneficial alternative to RSE, due the potentially less hardware intensive implementation of the proposed concept.
Several large-scale interferometric gravitational-wave detectors use resonant arm cavities to enhance the light power in the interferometer arms. These cavities are based on different optical designs: One design uses wedged input mirrors to create ad
LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4-km Michelson arms with Fabry-Perot cavities have auxiliary length control se
Vacuum quantum fluctuations impose a fundamental limit on the sensitivity of gravitational-wave interferometers, which rank among the most sensitive precision measurement devices ever built. The injection of conventional squeezed vacuum reduces quant
We introduce a novel test of General Relativity in the strong-field regime of a binary black hole coalescence. Combining information coming from Numerical Relativity simulations of coalescing black hole binaries with a Bayesian reconstruction of the
A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between env