ﻻ يوجد ملخص باللغة العربية
The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been estimated for stars with significant rotational velocities. This extraordinary data set gives us the unique possibility to calibrate rotationally and magnetically induced mixing processes. Therefore, we have computed a grid of stellar evolution models varying in mass, initial rotational velocity and chemical composition. In our models we find that although magnetic fields generated by the Spruit-Taylor dynamo are essential to understand the internal angular momentum transport (and hence the rotational behavior), the corresponding chemical mixing must be neglected to reproduce the observations. Further we show that for low metallicities detailed initial abundances are of prime importance, as solar-scaled abundances may result in significant calibration errors.
Convection in the cores of massive stars becomes anisotropic when they rotate. This anisotropy leads to a misalignment of the thermal gradient and the thermal flux, which in turn results in baroclinicity and circulation currents in the upper radiativ
One of the main uncertainties in evolutionary calculations of massive stars is the efficiency of internal mixing. It changes the chemical profile inside the star and can therefore affect the structure and further evolution. We demonstrate that ecli
We analyze the variability in accretion-related emission lines for 40 Classical T Tauri stars to probe the extent of accretion variations in young stellar objects. Our analysis is based on multi-epoch high-resolution spectra for young stars in Tau-Au
The bimodality in observed present-day galaxy colours has long been a challenge for hierarchical galaxy formation models, as it requires some physical process to quench (and keep quenched) star formation in massive galaxies. Here we examine phenomeno
Magnetic fields are ubiquitous in the Universe. The Suns magnetic field drives the solar wind and causes solar flares and other energetic surface phenomena that profoundly affect space weather here on Earth. The first magnetic field in a star other t