Oscillating moduli fields can support a cosmological scaling solution in the presence of a perfect fluid when the scalar field potential satisfies appropriate conditions. We examine when such conditions arise in higher-dimensional, non-linear sigma-models that are reduced to four dimensions under a generalized Scherk-Schwarz compactification. We show explicitly that scaling behaviour is possible when the higher-dimensional action exhibits a global SL(n,R) or O(2,2) symmetry. These underlying symmetries can be exploited to generate non-trivial scaling solutions when the moduli fields have non-canonical kinetic energy. We also consider the compactification of eleven-dimensional vacuum Einstein gravity on an elliptic twisted torus.