ﻻ يوجد ملخص باللغة العربية
In this paper we present a re-analysis of the criteria used to characterize the Peimbert classes I, IIa, IIb, III and IV, through a statistical study of a large sample of planetary nebulae previously classified according to these groups. In the original classification, it is usual to find planetary nebulae that cannot be associated with a single type; these most likely have dubious classifications into two or three types. Statistical methods can greatly contribute in providing a better characterization of planetary nebulae groups. We use the Bayes Theorem to calculate the posterior probabilities for an object to be member of each of the types I, IIa, IIb, III and IV. This calculation is particularly important for planetary nebulae that are ambiguously classified in the traditional method. The posterior probabilities are defined from the probability density function of classificatory parameters of a well-defined sample, composed only by planetary nebulae unambiguously fitted into the Peimbert types. Because the probabilities depend on the available observational data, they are conditional probabilities, and, as new observational data are added to the sample, the classification of the nebula can be improved, to take into account this new information. This method differs from the original classificatory scheme, because it provides a quantitative result of the representativity of the object within its group. Also, through the use of marginal distributions it is possible to extend the Peimbert classification even to those objects for which only a few classificatory parameters are known.
We present a statistical analysis of a complete sample (255) of northern planetary nebulae (PNe). Our analysis is based on morphology as a main parameter. The major morphological classes are: round (26 % of the sample), elliptical (61 %), and bip
This study investigate the effectiveness of using Deep Learning (DL) for the classification of planetary nebulae (PNe). It focusses on distinguishing PNe from other types of objects, as well as their morphological classification. We adopted the deep
Bayesian Dark Knowledge is a method for compressing the posterior predictive distribution of a neural network model into a more compact form. Specifically, the method attempts to compress a Monte Carlo approximation to the parameter posterior into a
The determination of reliable distances to Planetary Nebulae (PNe) is one of the major limitations in the study of this class of objects in the Galaxy. The availability of new photometric surveys such as IPHAS covering large portions of the sky gives
I review the progress in research on intracluster planetary nebulae over the last five years. Hundreds more intracluster planetary nebulae have been detected in the nearby Virgo and Fornax galaxy clusters, searches of several galaxy groups have been