ﻻ يوجد ملخص باللغة العربية
Starting from a system of $N$ radial Schrodinger equations with a vanishing potential and finite threshold differences between the channels, a coupled $N times N$ exactly-solvable potential model is obtained with the help of a single non-conservative supersymmetric transformation. The obtained potential matrix, which subsumes a result obtained in the literature, has a compact analytical form, as well as its Jost matrix. It depends on $N (N+1)/2$ unconstrained parameters and on one upper-bounded parameter, the factorization energy. A detailed study of the model is done for the $2times 2$ case: a geometrical analysis of the zeros of the Jost-matrix determinant shows that the model has 0, 1 or 2 bound states, and 0 or 1 resonance; the potential parameters are explicitly expressed in terms of its bound-state energies, of its resonance energy and width, or of the open-channel scattering length, which solves schematic inverse problems. As a first physical application, exactly-solvable $2times 2$ atom-atom interaction potentials are constructed, for cases where a magnetic Feshbach resonance interplays with a bound or virtual state close to threshold, which results in a large background scattering length.
A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behavior of solutions at the origin. Contrary to usual transformations, these ``non-conservative trans
We calculate the entanglement-assisted and unassisted channel capacities of an exactly solvable spin star system, which models the quantum dephasing channel. The capacities for this non-Markovian model exhibit a strong dependence on the coupling stre
We present application examples of a graphical method for the efficient construction of potential matrix elements in quantum physics or quantum chemistry. The simplicity and power of this method are illustrated through several examples. In particular
In this paper, we introduce a family of sextic potentials that are exactly solvable, and for the first time, a family of triple-well potentials with their whole energy spectrum and wavefunctions using supersymmetry method. It was suggested since thre
We present a systematic analysis and classification of several models of quantum batteries involving different combinations of two level systems and quantum harmonic oscillators. In particular, we study energy transfer processes from a given quantum