ﻻ يوجد ملخص باللغة العربية
CONTEXT: The chemistry in the inner few thousand AU of accreting envelopes around young stellar objects is predicted to vary greatly with far-UV and X-ray irradiation by the central star. Aim We search for molecular tracers of high-energy irradiation by the protostar in the hot inner envelope. METHODS: The Submillimeter Array (SMA) has observed the high-mass star forming region AFGL 2591 in lines of CS, SO, HCN, HCN(v2=1), and HC15N with 0.6 resolution at 350 GHz probing radial scales of 600-3500 AU for an assumed distance of 1 kpc. The SMA observations are compared with the predictions of a chemical model fitted to previous single-dish observations. RESULTS: The CS and SO main peaks are extended in space at the FWHM level, as predicted in the model assuming protostellar X-rays. However, the main peak sizes are found smaller than modeled by nearly a factor of 2. On the other hand, the lines of CS, HCN, and HC15N, but not SO and HCN(v2=1), show pedestal emissions at radii of about 3500 AU that are not predicted. All lines except SO show a secondary peak within the approaching outflow cone. A dip or null in the visibilities caused by a sharp decrease in abundance with increasing radius is not observed in CS and only tentatively in SO. CONCLUSIONS: The emission of protostellar X-rays is supported by the good fit of the modeled SO and CS amplitude visibilities including an extended main peak in CS. The broad pedestals can be interpreted by far-UV irradiation in a spherically non-symmetric geometry, possibly comprising outflow walls on scales of 3500 -- 7000 AU. The extended CS and SO main peaks suggest sulfur evaporation near the 100 K temperature radius.
We aim to understand the rich chemical composition of AFGL 2591, a prototypical isolated high-mass star-forming region. Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar envelope of AFGL 2591 were derived wi
Recent water line observations toward several low-mass protostars suggest low water gas fractional abundances in the inner warm envelopes. Water destruction by X-rays has been proposed to influence the water abundances in these regions, but the detai
This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI ins
We have made mapping observations of L1551 IRS 5, L1551NE, L723, and L43 and single-point observations of IRAS 16293-2422 in the submillimeter CS (J = 7-6) and HCN (J = 4-3) lines with ASTE. Including our previous ASTE observations of L483 and B335,
We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observa