ترغب بنشر مسار تعليمي؟ اضغط هنا

Convective and non-convective mixing in AGB stars

122   0   0.0 ( 0 )
 نشر من قبل Falk Herwig
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the current state of modeling convective mixing in AGB stars. The focus is on results obtained through multi-dimensional hydrodynamic simulations of AGB convection, both in the envelope and the unstable He-shell. Using two different codes and a wide range of resolutions and modeling assumptions we find that mixing across convective boundaries is significant for He-shell flash convection. We present a preliminary quantitative analysis of this convectively induced extra mixing, based on a sub-set of our simulations. Other non-standard mixing will be discussed briefly.



قيم البحث

اقرأ أيضاً

We estimate the extent of overshooting inwards from the bottom of the intershell convective zone in thermal pulses in (S)AGB stars. We find that the buoyancy is so strong that any overshooting should be negligible. The temperature inversion at the bo ttom of the convective zone adds to the stability of the region. Any mixing that occurs in this region is highly unlikely to be due to convective overshooting, and so must be due to another process.
The $s$-process nucleosynthesis in Asymptotic Giant Branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up where the 13C pocket for the s process in AGB stars forms. In this work we apply a CBM model motivated by simulations and theory to models with initial mass $M = 2$ and $M = 3M_odot$, and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundance of 12C and 16O are increased by CBM at the bottom of pulse-driven convection zone. This mixing is affecting the $^{22}Ne(alpha,n)^{25}Mg$ activation and the s-process effciency in the 13C-pocket. In our model CBM at the bottom of the convective envelope during the third dredgeup represents gravity wave mixing. We take further into account that hydrodynamic simulations indicate a declining mixing efficiency already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the 13C-pocket with a mass of $approx 10^{-4}M_odot$. The final $s$-process abundances are characterized by 0.36 < [s=Fe] < 0.78 and the heavy-to-light s-process ratio is 0.23 < [hs=ls] < 0.45. Finally, we compare our results with stellar observations, pre-solar grain measurements and previous work.
Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries and single stars alike. We compute `effective overshoot measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and $alpha$ Cen A). Collectively these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures we find that the `effective overshoot for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly-efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.
In this work, we investigate the impact of uncertainties due to convective boundary mixing (CBM), commonly called `overshoot, namely the boundary location and the amount of mixing at the convective boundary, on stellar structure and evolution. For th is we calculated two grids of stellar evolution models with the MESA code, each with the Ledoux and the Schwarzschild boundary criterion, and vary the amount of CBM. We calculate each grid with the initial masses $15$, $20$ and $25,rm{M}_odot$. We present the stellar structure of the models during the hydrogen and helium burning phases. In the latter, we examine the impact on the nucleosynthesis. We find a broadening of the main-sequence with more CBM, which is more in agreement with observations. Furthermore during the core hydrogen burning phase there is a convergence of the convective boundary location due to CBM. The uncertainties of the intermediate convective zone remove this convergence. The behaviour of this convective zone strongly affects the surface evolution of the model, i.e. how fast it evolves red-wards. The amount of CBM impacts the size of the convective cores and the nucleosynthesis, e.g. the $^{12}$C to $^{16}$O ratio and the weak s-process. Lastly, we determine the uncertainty that the range of parameter values investigated introduce and we find differences of up to $70%$ for the core masses and the total mass of the star.
The helioseismic observations of the internal rotation profile of the Sun raise questions about the two-dimensional (2D) nature of the transport of angular momentum in stars. Here we derive a convective prescription for axisymmetric (2D) stellar evol ution models. We describe the small scale motions by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation prescription makes use of the angular dependence of the linear dispersion relation to estimate the anisotropy of convective velocities. We are then able to provide closed form expressions for the thermal and angular momentum fluxes with only one free parameter, the mixing length. We illustrate our prescription for slow rotation, to first order in the rotation rate. In this limit, the thermodynamical variables are spherically symetric, while the angular momentum depends both on radius and latitude. We obtain a closed set of equations for stellar evolution, with a self-consistent description for the transport of angular momentum in convective regions. We derive the linear coefficients which link the angular momentum flux to the rotation rate ($Lambda$- effect) and its gradient ($alpha$-effect). We compare our results to former relevant numerical work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا