ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes

108   0   0.0 ( 0 )
 نشر من قبل Laurent Cognet
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-nanotube photometry was used to measure the product of absorption cross-section and fluorescence quantum yield for 12 (n,m) structural species of semiconducting SWNTs in aqueous SDBS suspension. These products ranged from 1.7 to 4.5 x 10(-19) cm2/C atom, generally increasing with optical band gap as described by the energy gap law. The findings suggest fluorescent quantum yields of ~8% for the brightest, (10,2) species and introduce the empirical calibration factors needed to deduce quantitative (n,m) distributions from bulk fluorimetric intensities.



قيم البحث

اقرأ أيضاً

407 - Stephane Berciaud 2007
Current methods for producing single-walled carbon nanotubes (SWNTs) lead to heterogeneous samples containing mixtures of metallic and semiconducting species with a variety of lengths and defects. Optical detection at the single nanotube level should thus offer the possibility to examine these heterogeneities provided that both SWNT species are equally well detected. Here, we used photothermal heterodyne detection to record absorption images and spectra of individual SWNTs. Because this photothermal method relies only on light absorption, it readily detects metallic nanotubes as well as the emissive semiconducting species. The first and second optical transitions in individual semicontucting nanotubes have been probed. Comparison between the emission and absorption spectra of the lowest-lying optical transition reveal mainly small Stokes shifts. Side bands in the near-infrared absorption spectra are observed and assigned to exciton-phonon bound states. No such sidebands are detected around the lowest transition of metallic nanotubes.
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.
Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changes in discrete steps after exposure to acid, base, or diazonium reactants. The steps are uncorrelated in space and time, and reflect the quenching of mobile excitons at localized sites of reversible or irreversible chemical attack. Analysis of step amplitudes reveals an exciton diffusional range of about 90 nanometers, independent of nanotube structure. Each exciton visits approximately 104 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations.
206 - Xi Chen , Bairen Zhu , Anmin Zhang 2014
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation feature and the dispersion of electronic structure around the center of Brillouin zone of a semiconducting SWNT (14, 13) is extracted.
We characterize the energy loss of the non-equilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with ohmic contacts, the dc resistan ce at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا