ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice QCD determination of patterns of excited baryon states

235   0   0.0 ( 0 )
 نشر من قبل Stephen J. Wallace
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.



قيم البحث

اقرأ أيضاً

167 - C. Alexandrou 2013
We investigate the excited states of the nucleon using $N_f=2$ twisted mass gauge configurations with pion masses in the range of about 270 MeV to 450 MeV and one ensemble of $N_f=2$ Clover fermions at almost physical pion mass. We use two different sets of variational bases and study the resulting generalized eigenvalue problem. We present results for the two lowest positive and negative parity states.
We present results for the spectrum of excited mesons obtained from temporal correlations of spatially-extended single-hadron and multi-hadron operators computed in lattice QCD. The stochastic LapH algorithm is implemented on anisotropic, dynamical l attices for isovectors for pions of mass $390$ MeV. A large correlation matrix with single-particle and two-particle probe operators is diagonalized to identify resonances. The masses of excited states in the $I=1, S=0, T_{1u}^+$ channel as well as the mixing of single and multi-particle probe operators are presented.
The nucleon axial coupling, $g_A$, is a fundamental property of protons and neutrons, dictating the strength with which the weak axial current of the Standard Model couples to nucleons, and hence, the lifetime of a free neutron. The prominence of $g_ A$ in nuclear physics has made it a benchmark quantity with which to calibrate lattice QCD calculations of nucleon structure and more complex calculations of electroweak matrix elements in one and few nucleon systems. There were a number of significant challenges in determining $g_A$, notably the notorious exponentially-bad signal-to-noise problem and the requirement for hundreds of thousands of stochastic samples, that rendered this goal more difficult to obtain than originally thought. I will describe the use of an unconventional computation method, coupled with ludicrously fast GPU code, access to publicly available lattice QCD configurations from MILC and access to leadership computing that have allowed these challenges to be overcome resulting in a determination of $g_A$ with 1% precision and all sources of systematic uncertainty controlled. I will discuss the implications of these results for the convergence of $SU(2)$ Chiral Perturbation theory for nucleons, as well as prospects for further improvements to $g_A$ (sub-percent precision, for which we have preliminary results) which is part of a more comprehensive application of lattice QCD to nuclear physics. This is particularly exciting in light of the new CORAL supercomputers coming online, Sierra and Summit, for which our lattice QCD codes achieve a machine-to-machine speed up over Titan of an order of magnitude.
117 - Sinya Aoki , Takumi Doi 2020
In this article, we review the HAL QCD method to investigate baryon-baryon interactions such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate baryon-baryon interactions by defining potentials in field theories such as QCD. We introduce the Nambu-Bethe-Salpeter (NBS) wave functions in QCD for two baryons below the inelastic threshold. We then define the potential from NBS wave functions in terms of the derivative expansion, which is shown to reproduce the scattering phase shifts correctly below the inelastic threshold. Using this definition, we formulate a method to extract the potential in lattice QCD. Secondly, we discuss pros and cons of the HAL QCD method, by comparing it with the conventional method, where one directly extracts the scattering phase shifts from the finite volume energies through the Luschers formula. We give several theoretical and numerical evidences that the conventional method combined with the naive plateau fitting for the finite volume energies in the literature so far fails to work on baryon-baryon interactions due to contaminations of elastic excited states. On the other hand, we show that such a serious problem can be avoided in the HAL QCD method by defining the potential in an energy-independent way. We also discuss systematics of the HAL QCD method, in particular errors associated with a truncation of the derivative expansion. Thirdly, we present several results obtained from the HAL QCD method, which include (central) nuclear force, tensor force, spin-orbital force, and three nucleon force. We finally show the latest results calculated at the nearly physical pion mass, $m_pi simeq 146$ MeV, including hyperon forces which lead to form $OmegaOmega$ and $NOmega$ dibaryons.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Results in the zero-momentum bosonic I=1/2, S=1, T1u symmetry sector of QCD using a correlation matrix of 58 operators are presented. All needed Wick contra ctions are efficiently evaluated using a stochastic method of treating the low-lying modes of quark propagation that exploits Laplacian Heaviside quark-field smearing. Level identification using probe operators is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا