ترغب بنشر مسار تعليمي؟ اضغط هنا

Functionalized nanopore-embedded electrodes for rapid DNA sequencing

274   0   0.0 ( 0 )
 نشر من قبل Ralph Scheicher
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The determination of a patients DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design personalized medicine [3]. Moreover, statistical studies and comparison of genomes [4] of a large number of individuals are crucial for the analysis of mutations [5] and hereditary diseases, paving the way to preventive medicine [6]. DNA sequencing is, however, currently still a vastly time-consuming and very expensive task [4], consisting of pre-processing steps, the actual sequencing using the Sanger method, and post-processing in the form of data analysis [7]. Here we propose a new approach that relies on functionalized nanopore-embedded electrodes to achieve an unambiguous distinction of the four nucleic acid bases in the DNA sequencing process. This represents a significant improvement over previously studied designs [8,9] which cannot reliably distinguish all four bases of DNA. The transport properties of the setup investigated by us, employing state-of-the-art density functional theory together with the non-equilibrium Greens Function method, leads to current responses that differ by at least one order of magnitude for different bases and can thus provide a much more robust read-out of the base sequence. The implementation of our proposed setup could thus lead to a viable protocol for rapid DNA sequencing with significant consequences for the future of genome related research in particular and health care in general.



قيم البحث

اقرأ أيضاً

Solid-state nanopores are single molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage and salt dependence of the frequency of double-str anded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier limited, length dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation which includes the contribution of an entropic barrier for polymer entry.
The threading of a polymer chain through a small pore is a classic problem in polymer dynamics and underlies nanopore sensing technology. However important experimental aspects of the polymer motion in a solid-state nanopore, such as an accurate meas urement of the velocity variation during translocation, have remained elusive. In this work we analysed the translocation through conical quartz nanopores of a 7 kbp DNA double-strand labelled with six markers equally spaced along its contour. These markers, constructed from DNA hairpins, give direct experimental access to the translocation dynamics. On average we measure a 5% reduction in velocity during the translocation. We also find a striking correlation in velocity fluctuations with a decay constant of 100s of {mu}s. These results shed light on hitherto unresolved problems in the dynamics of DNA translocation and provide guidance for experiments seeking to determine positional information along a DNA strand.
When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this melting transition have been intensively investigated. Recently t here has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.
135 - Jinyu Li , Philip C. Nelson , 2006
Single-molecule experiments in which force is applied to DNA or RNA molecules have enabled important discoveries of nucleic acid properties and nucleic acid-enzyme interactions. These experiments rely on a model of the polymer force-extension behavio r to calibrate the experiments; typically the experiments use the worm-like chain (WLC) theory for double-stranded DNA and RNA. This theory agrees well with experiments for long molecules. Recent single-molecule experiments have used shorter molecules, with contour lengths in the range of 1-10 persistence lengths. Most WLC theory calculations to date have assumed infinite molecule lengths, and do not agree well with experiments on shorter chains. Key physical effects that become important when shorter molecules are used include (i) boundary conditions which constrain the allowed fluctuations at the ends of the molecule and (ii) rotational fluctuations of the bead to which the polymer is attached, which change the apparent extension of the molecule. We describe the finite worm-like chain (FWLC) theory, which takes into account these effects. We show the FWLC predictions diverge from the classic WLC solution for molecules with contour lengths a few times the persistence length. Thus the FWLC will allow more accurate experimental calibration for relatively short molecules, facilitating future discoveries in single-molecule force microscopy.
123 - Michael J. Harrison 2010
The role of thermal pressure fluctuation excited within tightly packaged DNA prior to ejection from protein capsid shells is discussed in a model calculation. At equilibrium before ejection we assume the DNA is folded many times into a bundle of para llel segments that forms an equilibrium conformation at minimum free energy, which presses tightly against internal capsid walls. Using a canonical ensemble at temperature T we calculate internal pressure fluctuations against a slowly moving or static capsid mantle for an elastic continuum model of the folded DNA bundle. It is found that fluctuating pressure on the capsid internal wall from thermal excitation of longitudinal acoustic vibrations in the bundle may have root-mean-square values which are several tens of atmospheres for typically small phage dimensions. Comparisons are given with measured data on three mutants of lambda phage with different base pair lengths and total genome ejection pressures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا