ﻻ يوجد ملخص باللغة العربية
The actual physical origin of the gap at the antinodes, and a clear identification of the superconducting gap are fundamental open issues in the physics of high-$T_c$ superconductors. Here, we present a systematic electronic Raman scattering study of a mercury-based single layer cuprate, as a function of both doping level and temperature. On the deeply overdoped side, we show that the antinodal gap is a true superconducting gap. In contrast, on the underdoped side, our results reveal the existence of a break point close to optimal doping below which the antinodal gap is gradually disconnected from superconductivity. The nature of both the superconducting and normal state is distinctly different on each side of this breakpoint.
Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spi
We previously introduced [T. Cren et al., Europhys. Lett. 52, 203 (2000)] an energy-dependant gap function, $Delta(E)$, that fits the unusual shape of the quasiparticle (QP) spectrum for both BiSrCaCuO and YBaCuO. A simple anti-resonance in $Delta(E)
Starting from a spin-fermion model for the cuprate superconductors, we obtain an effective interaction for the charge carriers by integrating out the spin degrees of freedom. Our model predicts a quantum critical point for the superconducting interac
Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa$_2$Cu$
We propose that Resistivity Curvature Mapping (RCM) based on the in-plane resistivity data is a useful way to objectively draw an electronic phase diagrams of high-T_c cuprates, where various crossovers are important. In particular, the pseudogap cro