ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

183   0   0.0 ( 0 )
 نشر من قبل Tetsuo Hanaguri
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the pseudogap phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of Tc



قيم البحث

اقرأ أيضاً

The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with node s along the (+-pi,+-pi)-directions is resolved. The thermal conductivity measurement also reveals a first order transition at H_c2, indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d_{x^2-y^2}, implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.
Quasi-particle interference (QPI) measurements have provided a powerful tool for determining the momentum dependence of the gap of unconventional superconductors. Here we examine the possibility of using such measurements to probe the frequency and m omentum dependence of the electron self-energy. For illustration, we calculate the QPI response function for a cuprate-like Fermi surface with an electron self-energy from an RPA approximation. Then we try to reextract the self-energy from the dispersion of the peaks in the QPI response function using different approaches. We show that in principle it is possible to extract the self-energy from the QPI response for certain nested momentum directions. We discuss some of the limitations that one faces.
We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results f or the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.
Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission (ARPES) data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference (QPI) to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015)]. We show that all features present for the simple two-band model for the sign-changing $s_{+-}$-wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs, and identify various features of these superconducting gaps functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs, due to the smallness of the pockets and the near proximity of two of the gap energies.
One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strengt h and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا