ﻻ يوجد ملخص باللغة العربية
The next to the leading order Casimir effect for a real scalar field, within $phi^4$ theory, confined between two parallel plates is calculated in one spatial dimension. Here we use the Greens function with the Dirichlet boundary condition on both walls. In this paper we introduce a systematic perturbation expansion in which the counterterms automatically turn out to be consistent with the boundary conditions. This will inevitably lead to nontrivial position dependence for physical quantities, as a manifestation of the breaking of the translational invariance. This is in contrast to the usual usage of the counterterms, in problems with nontrivial boundary conditions, which are either completely derived from the free cases or at most supplemented with the addition of counterterms only at the boundaries. We obtain emph{finite} results for the massive and massless cases, in sharp contrast to some of the other reported results. Secondly, and probably less importantly, we use a supplementary renormalization procedure in addition to the usual regularization and renormalization programs, which makes the usage of any analytic continuation techniques unnecessary.
We calculate the next to the leading order Casimir effect for a real scalar field, within $phi^4$ theory, confined between two parallel plates in three spatial dimensions with the Dirichlet boundary condition. In this paper we introduce a systematic
We present a new real space renormalization-group map, on the space of probabilities, to study the renormalization of the SUSY phi^4. In our approach we use the random walk representation on a lattice labeled by an ultrametric space. Our method can b
We provide an analysis of the structure of renormalisation scheme invariants for the case of $phi^4$ theory, relevant in four dimensions. We give a complete discussion of the invariants up to four loops and include some partial results at five loops,
Recently, non-perturbative approximate solutions were presented that go beyond the well-known mean-field resummation. In this work, these non-perturbative approximations are used to calculate finite temperature equilibrium properties for scalar $phi^
We consider a symmetric scalar theory with quartic coupling in 4-dimensions. We show that the 4 loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the leve