ﻻ يوجد ملخص باللغة العربية
We investigate the gel formation from the equilibrium sol phase in a simple model that has the characteristics of (colloidal) gel-forming systems at a finite temperature. At low volume fraction and low temperatures, particles are linked by long-living bonds and form an open percolating network. By means of molecular dynamics simulations, we study the lifetime of bonds and nodes of the gel network in order to relate these quantities to the complex relaxation dynamics observed.
We study a lattice model of attractive colloids. It is exactly solvable on sparse random graphs. As the pressure and temperature are varied it reproduces many characteristic phenomena of liquids, glasses and colloidal systems such as ideal gel format
We use numerical simulations and an athermal quasi-static shear protocol to investigate the yielding of a model colloidal gel. Under increasing deformation, the elastic regime is followed by a significant stiffening before yielding takes place. A spa
A number of general trends are known to occur in systems displaying secondary processes in glasses and glass formers. Universal features can be identified as components of large and small cooperativeness whose competition leads to excess wings or apa
Colloidal particles with strong, short-ranged attractions can form a gel. We simulate this process without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account for presence of a thermalized solvent. We show that HI s
In this letter, we investigate several aspects related to the effect of hydrodynamics interactions on phase separation-induced gelation of colloidal particles. We explain physically the observation of Tanaka and Araki[Phys. Rev. Lett. {bf 85}, 1338 (