ﻻ يوجد ملخص باللغة العربية
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to gamma ~30 and intrinsic luminosity up to ~10^26 W/Hz. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ~5x10^13 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ~2x10^11 K, i.e., closer to equipartition.
The fine-scale structure and the kinematics of relativistic active galactic nuclei (AGN) jets have been studied by very-long-baseline interferometry at very high resolutions since 1998 at 2 cm wavelength for a sample of over a hundred radio sources (
The major multi-epoch VLBA programs are described and discussed in terms of relativistic beaming models. Broadly speaking the observed kinematics are consistent with models having a parent population which is only mildly relativistic but with Lorentz
Synchrotron self-absorption in active galactic nuclei (AGN) jets manifests itself as a time delay between flares observed at high and low radio frequencies. It is also responsible for the observing frequency dependent change in size and position of t
In this first paper from forthcoming series of works devoted to radio image of relativistic jets from active galactic nuclei the role of internal structure of a flow is discussed. We determine the radial profiles of all physical values for reasonable
We describe the parsec-scale kinematics of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGN from the MOJAVE and 2 cm Survey programs. Nearly all of th