ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron and X-ray Scattering Studies of the Lightly-Doped Spin-Peierls System Cu(1-x)Cd(x)GeO3

127   0   0.0 ( 0 )
 نشر من قبل Sara Haravifard
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3 have been studied using bulk susceptibility, x-ray diffraction, and inelastic neutron scattering techniques. We investigate the triplet gap in the magnetic excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and its relation to the spin-Peierls dimerisation order parameter. We employ two different theoretical forms to model the inelastic neutron scattering cross section and chi(Q,omega), and show the sensitivity of the gap energy to the choice of chi(Q,omega). We find that a finite gap exists at the spin-Peierls phase transition.



قيم البحث

اقرأ أيضاً

We study long wavelength magnetic excitations in lightly doped La_{2-x}Sr_{x}CuO_{4} (x < 0.03) detwinned crystals. The lowest energy magnetic anisotropy induced gap can be understood in terms of the antisymmetric spin interaction inside the antiferr omagnetic (AF) phase. The second magnetic resonace, analyzed in terms of in-plane spin anisotropy, shows unconventional behavior within the AF state and led to the discovery of collective spin excitations pertaining to a field induced magnetically ordered state. This state persists in a 9 T field to more than 100 K above the N{e}el temperature in x = 0.01.
Recent neutron scattering measurements indicate that NaFe$_{1-x}$Cu$_{x}$As forms an antiferromagnetic stripe phase near $xapprox 0.5$ in a Mott insulating state. This copper concentration is well in excess of that required for superconductivity, $x < 0.04$. We have investigated the development of magnetism in this compound using $^{23}$Na nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation measurements performed on single crystals ($x$ = 0.13, 0.18, 0.24, and 0.39). We find multiple inequivalent Na sites, each of which is associated with a different number of nearest neighbor Fe sites occupied by a Cu dopant. We show that the distribution of Cu substituted for Fe is random in-plane for low concentrations ($x = 0.13$ and 0.18), but deviates from this with increasing Cu doping. As is characteristic of many pnictide compounds, there is a spin pseudo gap that increases in magnitude with dopant concentration. This is correlated with a corresponding increase in orbital NMR frequency shift indicating a change in valence from Cu$^{2+}$ to a Cu$^{1+}$ state as $x$ exceeds 0.18, concomitant with the change of Fe$^{2+}$ to Fe$^{3+}$ resulting in the formation of magnetic clusters. However, for $xleq 0.39$ there is no evidence of long-range static magnetic order.
109 - K. Ishii , T. Inami , K. Ohwada 2004
Electronic excitations near the Fermi energy in the hole doped manganese oxides (La1-xSrxMnO3, x=0.2 and 0.4) have been elucidated by using the resonant inelastic x-ray scattering (RIXS) method. A doping effect in the strongly correlated electron sys tems has been observed for the first time. The scattering spectra show that a salient peak appears in low energies indicating the persistence of the Mott gap. At the same time, the energy gap is partly filled by doping holes and the energy of the spectral weight shifts toward lower energies. The excitation spectra show little change in the momentum space as is in undoped LaMnO3, but the scattering intensities in the low energy excitations of x=0.2 are anisotropic as well as temperature dependent, which indicates a reminiscence of the orbital nature.
As a simple cubic system with only one f electron per cerium ion, CeB6 is of model character to investigate the interplay of orbital phenomena with magnetism. It is also a textbook example of a compound that exhibits magnetically hidden order -- a lo w-temperature magnetic phase with ordered quadrupolar moments. It is difficult to identify the symmetry of such hidden-order states in common x-ray or neutron scattering experiments, as there is no signal in zero field, however alternative techniques like neutron diffraction in external field, resonant x-ray scattering, or ultrasonic investigations can be applied. Another possible method for characterizing hidden order is to look at the magnetic excitation spectrum, which carries the imprint of the multipolar interactions and the hidden order parameter in its dispersion relations. Using a specific candidate model, the dispersion is calculated and then compared to that measured with inelastic neutron scattering. Until recently, only a limited amount of data which show the presence of dispersing excitations measured along a few high-symmetry directions in an applied magnetic field were available. Early attempts to compare such calculations with experiments showed that only strongest modes at high-symmetry points could be identified. The present review of the most recent neutron-scattering results is intended to satisfy the need of more accurate inelastic neutron-scattering experiments as a function of field and temperature, giving us the opportunity to identify existing excitation branches in CeB6 and conclusively compare them with the theoretically predicted multipolar excitations.
We use neutron scattering to study the influence of a magnetic field on spin structures of Nd$_2$CuO$_4$. On cooling from room temperature, Nd$_2$CuO$_4$ goes through a series of antiferromagnetic (AF) phase transitions with different noncollinear sp in structures. While a c-axis aligned magnetic field does not alter the basic zero-field noncollinear spin structures, a field parallel to the CuO$_2$ plane can transform the noncollinear structure to a collinear one (spin-flop transition), induce magnetic disorder along the c-axis, and cause hysteresis in the AF phase transitions. By comparing these results directly to the magnetoresistance (MR) measurements of Nd$_{1.975}$Ce$_{0.025}$CuO$_4$, which has essentially the same AF structures as Nd$_2$CuO$_4$, we find that a magnetic-field-induced spin-flop transition, AF phase hysteresis, and spin c-axis disorder all affect the transport properties of the material. Our results thus provide direct evidence for the existence of a strong spin-charge coupling in electron-doped copper oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا