ﻻ يوجد ملخص باللغة العربية
Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2) ~ 10^4 cm^-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 M_sun and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2 and they indicate that: heavy element abundances may be reduced by a factor of five relative to the solar neighbourhood (similar to dwarf irregular galaxies and damped Lyman alpha systems); very low extinction (Av < 4 mag) due to a very low dust-to-gas ratio; an enhanced cosmic ray ionisation rate; and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are probably also related to the continuing infall of primordial (or low metallicity) halo gas since the Milky Way formed. Finally, we note that shocks from the old supernova remnant GSH 138-01-94 may have determined the morphology and dynamics of EC2.
G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The ori
We have extensively mapped a sample of dense molecular clouds (L1512, TMC-1C, L1262, Per 7, L1389, L1251E) in lines of HC3N, CH3OH, SO and C^{18}O. We demonstrate that a high degree of chemical differentiation is present in all of the observed clouds
We present a new method to analyse and reduce chemical networks and apply this technique to the chemistry in molecular clouds. Using the technique, we investigated the possibility of reducing the number of chemical reactions and species in the UMIST
We present results of wide-field $^{12}$CO ($J = 2 - 1$) and $^{13}$CO ($J = 2 - 1$) observations toward the Aquila Rift and Serpens molecular cloud complexes (25$^circ < l < 33^circ$ and $1^circ < b < 6^circ$) at an angular resolution of 3$$.4 ($app
Using a source selection biased towards high mass star forming regions, we used a Large Velocity Gradient (LVG) code to calculate the H2 densities and CS column densities for a sample of Midcourse Space Experiment (MSX) 8 micron infrared dark cores.