ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Valve Effect in Self-exchange Biased Ferromagnetic Metal/Semiconductor Bilayers

221   0   0.0 ( 0 )
 نشر من قبل Nitin Samarth
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report magnetization and magetoresistance measurements in hybrid ferromagnetic metal/semiconductor heterostructures comprised of MnAs/(Ga,Mn)As bilayers. Our measurements show that the (metallic) MnAs and (semiconducting) (Ga,Mn)As layers are exchange coupled, re- sulting in an exchange biasing of the magnetically softer (Ga,Mn)As layer that weakens with layer thickness. Magnetoresistance measurements in the current-perpendicular-to-the-plane geometry show a spin valve effect in these self-exchange biased bilayers. Similar measurements in MnAs/p- GaAs/(Ga,Mn)As trilayers show that the exchange coupling diminishes with spatial separation between the layers.



قيم البحث

اقرأ أيضاً

67 - G. Xiang , B. L. Sheu , M. Zhu 2006
We report the observation of the spin valve effect in (Ga,Mn)As/p-GaAs/(Ga,Mn)As trilayer devices. Magnetoresistance measurements carried out in the current in plane geometry reveal positive magnetoresistance peaks when the two ferromagnetic layers a re magnetized orthogonal to each other. Measurements carried out for different post-growth annealing conditions and spacer layer thickness suggest that the positive magnetoresistance peaks originate in a noncollinear spin valve effect due to spin-dependent scattering that is believed to occur primarily at interfaces.
Using an atomistic spin model, we have simulated spin wave injection and propagation into antiferromagnetic IrMn from an exchange coupled CoFe layer. The spectral characteristics of the exited spin waves have a complex beating behavior arising from t he non-collinear nature of the antiferromagnetic order. We find that the frequency response of the system depends strongly on the strength and frequency of oscillating field excitations. We also find that the strength of excited spin waves strongly decays away from the interfacial layer with a frequency dependent attenuation. Our findings suggest that spin waves generated by coupled ferromagnets are too weak to reverse IrMn in their entirety even with resonant excitation of a coupled ferromagnet. However, efficient spin wave injection into the antiferromagnet is possible due to the non-collinear nature of the IrMn spin ordering.
288 - M. C. Wu , A. Aziz , D. Morecroft 2008
Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.
The methodology used to obtain the values of the spin-orbit couplings from the spin expectation values from perturbation theory was incorrect. As a result Figs. 2 and 3 are incorrect.
We measure electrically detected ferromagnetic resonance in microdevices patterned from ultra-thin Co/Pt bilayers. Spin pumping and rectification voltages are observed and distinguished via their angular dependence. The spin-pumping voltage shows an unexpected increase as the cobalt thickness is reduced below 2 nm. This enhancement allows more efficient conversion of spin to charge current and motivates a theory modelling the dependence of impurity scattering on surface roughness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا