ﻻ يوجد ملخص باللغة العربية
Ultra-cold atoms trapped by light, with their robust quantum coherence and controllability, provide an attractive system for quantum information processing and for simulation of complex problems in condensed matter physics. Many quantum information processing schemes require that individual qubits be manipulated and deterministically entangled with one another, a process that would typically be accomplished by controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress toward this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. We have used an optical lattice of double-well potentials to isolate and manipulate arrays of paired atoms, inducing controlled entangling interactions within each pair. Our experiment is the first realization of proposals to use controlled exchange coupling in a system of neutral atoms. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation represents the first demonstration of the essential component of a quantum SWAP gate in neutral atoms. The half implementation of SWAP, the sqrt(SWAP) gate, is entangling, and together with single qubit rotations form a set of universal gates for quantum computation.
We propose a new quantum-computing scheme using ultracold neutral ytterbium atoms in an optical lattice. The nuclear Zeeman sublevels define a qubit. This choice avoids the natural phase evolution due to the magnetic dipole interaction between qubits
We propose a scheme for the initialization of a quantum computer based on neutral atoms trapped in an optical lattice with large lattice constant. Our focus is the development of a compacting scheme to prepare a perfect optical lattice of simple orth
Using optical dipole forces we have realized controlled transport of a single or any desired small number of neutral atoms over a distance of a centimeter with sub-micrometer precision. A standing wave dipole trap is loaded with a prescribed number o
We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modula
Exploring controllable interactions lies at the heart of quantum science. Neutral Rydberg atoms provide a versatile route toward flexible interactions between single quanta. Previous efforts mainly focused on the excitation annihilation~(EA) effect o