ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant optical Faraday rotation induced by a single electron spin in a quantum dot: Applications to entangling remote spins via a single photon

106   0   0.0 ( 0 )
 نشر من قبل Chengyong Hu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a quantum non-demolition method - giant Faraday rotation - to detect a single electron spin in a quantum dot inside a microcavity where negatively-charged exciton strongly couples to the cavity mode. Left- and right-circularly polarized light reflected from the cavity feels different phase shifts due to cavity quantum electrodynamics and the optical spin selection rule. This yields giant and tunable Faraday rotation which can be easily detected experimentally. Based on this spin-detection technique, a scalable scheme to create an arbitrary amount of entanglement between two or more remote spins via a single photon is proposed.



قيم البحث

اقرأ أيضاً

We experimentally investigate the dynamic nonlinear response of a single quantum dot (QD) strongly coupled to a photonic crystal cavity-waveguide structure. The temporal response is measured by pump-probe excitation where a control pulse propagating through the waveguide is used to create an optical Stark shift on the QD, resulting in a large modification of the cavity reflectivity. This optically induced cavity reflectivity modification switches the propagation direction of a detuned signal pulse. Using this device we demonstrate all-optical switching with only 14 attojoules of control pulse energy. The response time of the switch is measured to be up to 8.4 GHz, which is primarily limited by the cavity-QD interaction strength.
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing archite cture lies in demonstrating the ability to scale the system to many qubits. In this letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dots excited state. We obtain a lower bound on the fidelity of entanglement of 0.59, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3 x 10^3 s^-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
When an off-resonant light field is coupled with atomic spins, its polarization can rotate depending on the direction of the spins via a Faraday rotation which has been used for monitoring and controlling the atomic spins. We observed Faraday rotatio n by an angle of more than 10 degrees for a single 1/2 nuclear spin of 171Yb atom in a high-finesse optical cavity. By employing the coupling between the single nuclear spin and a photon, we have also demonstrated that the spin can be projected or weakly measured through the projection of the transmitted single ancillary photon.
119 - C.Y.Hu , W.J.Munro , J.L.OBrien 2009
Semiconductor quantum dots (known as artificial atoms) hold great promise for solid-state quantum networks and quantum computers. To realize a quantum network, it is crucial to achieve light-matter entanglement and coherent quantum-state transfer bet ween light and matter. Here we present a robust photon-spin entangling gate with high fidelity and high efficiency (up to 50 percent) using a charged quantum dot in a double-sided microcavity. This gate is based on giant circular birefringence induced by a single electron spin, and functions as an optical circular polariser which allows only one circularly-polarized component of light to be transmitted depending on the electron spin states. We show this gate can be used for single-shot quantum non-demolition measurement of a single electron spin, and can work as an entanglement filter to make a photon-spin entangler, spin entangler and photon entangler as well as a photon-spin quantum interface. This work allows us to make all building blocks for solid-state quantum networks with single photons and quantum-dot spins.
148 - E. Poem , O. Kenneth , Y. Kodriano 2011
We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initial izes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the excitons spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا