ﻻ يوجد ملخص باللغة العربية
We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.
Quantized compressive sensing (QCS) deals with the problem of representing compressive signal measurements with finite precision representation, i.e., a mandatory process in any practical sensor design. To characterize the signal reconstruction quali
Communication systems with low-resolution analog-to-digital-converters (ADCs) can exploit channel state information at the transmitter (CSIT) and receiver. This paper presents initial results on codebook design and performance analysis for limited fe
We present a joint source-channel multiple description (JSC-MD) framework for resource-constrained network communications (e.g., sensor networks), in which one or many deprived encoders communicate a Markov source against bit errors and erasure error
Sampling above the Nyquist rate is at the heart of sigma-delta modulation, where the increase in sampling rate is translated to a reduction in the overall (mean-squared-error) reconstruction distortion. This is attained by using a feedback filter at
The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gelfand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative