ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Test of Mass Ratio Variations with Lattice-Confined Ultracold Molecules

168   0   0.0 ( 0 )
 نشر من قبل Jun Ye
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a precision measurement of time variations of the proton-electron mass ratio using ultracold molecules in an optical lattice. Vibrational energy intervals are sensitive to changes of the mass ratio. In contrast to measurements that use hyperfine-interval-based atomic clocks, the scheme discussed here is model-independent and does not require separation of time variations of different physical constants. The possibility of applying the zero-differential-Stark-shift optical lattice technique is explored to measure vibrational transitions at high accuracy.



قيم البحث

اقرأ أيضاً

The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvi n $^{88}$Sr$_2$ molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.
We present the first observation of ultracold LiCs molecules. The molecules are formed in a two-species magneto-optical trap and detected by two-photon ionization and time-of-flight mass spectrometry. The production rate coefficient is found to be in the range $10^{-18}unit{cm^3s^{-1}}$ to $10^{-16}unit{cm^3s^{-1}}$, at least an order of magnitude smaller than for other heteronuclear diatomic molecules directly formed in a magneto-optical trap.
Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subra diant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding $10^{13}$ via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.
Chemical reactions represent a class of quantum problems that challenge both the current theoretical understanding and computational capabilities. Reactions that occur at ultralow temperatures provide an ideal testing ground for quantum chemistry and scattering theories, as they can be experimentally studied with unprecedented control, yet display dynamics that are highly complex. Here, we report the full product state distribution for the reaction 2KRb $rightarrow$ K$_2$ + Rb$_2$. Ultracold preparation of the reactants grants complete control over their initial quantum degrees of freedom, while state-resolved, coincident detection of both products enables the measurement of scattering probabilities into all 57 allowed rotational state-pairs. Our results show an overall agreement with a state-counting model based on statistical theory, but also reveal several deviating state-pairs. In particular, we observe a strong suppression of population in the state-pair closest to the exoergicity limit, which we precisely determine to be $9.7711^{+0.0007}_{-0.0005}$ cm$^{-1}$, as a result of the long-range potential inhibiting the escape of products. The completeness of our measurements provides a valuable benchmark for quantum dynamics calculations beyond the current state-of-the-art.
We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under realistic conditions, but a magnetic field allows suppression of the losses to below 10-14 cm3 s-1. The mechanism and optimum conditions for shielding differ substantially from those proposed by Gorshkov et al. [Phys. Rev. Lett. 101, 073201 (2008)], and do not require cancelation of the long-range dipole-dipole interaction that is vital to many applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا