ﻻ يوجد ملخص باللغة العربية
We report a first-principles calculation that models the effect of iron (Fe) atoms on the adsorption of a tungsten (W) atom on W(100) surfaces. The adsorption of a W atom on a clean W(100) surface is compared with that of a W atom on a W(100) surface covered with a monolayer of Fe atoms. The total energy of the system is computed as the function of the height of the W adatom. Our result shows that the W atom first adsorbs on top of the Fe monolayer. Then the W atom can replace one of the Fe atoms through a path with a moderate energy barrier and reduce its energy further. This intermediate site makes the adsorption (and desorption) of W atoms a two-step process in the presence of Fe atoms and lowers the overall adsorption energy by nearly 2.4 eV. The Fe atoms also provide a surface for W atoms to adsorb facilitating the diffusion of W atoms. The combination of these two effects result in a much more efficient desorption and diffusion of W atoms in the presence of Fe atoms. Our result provides a fundamental mechanism that can explain the activated sintering of tungsten by Fe atoms.
The adsorption of thienylenevinylene oligomers on the Si(100) surface has been investigated using scanning tunneling microscopy. The mode of substitution of the thiophene ring exerts a strong influence on the adsorption configurations and the images
The interaction of CO with the Fe3O4(001)-(rt2xrt2)R45{deg} surface was studied using temperature programmed desorption (TPD), scanning tunneling microscopy (STM) and x-ray photoelectron spectroscopy (XPS), the latter both under ultrahigh vacuum (UHV
The adsorption and diffusion of H atoms on beta-PtO2(001) surface have been studied using first-principles calculations. The chemisorbed H atoms are found to bind preferentially on the top sites of O atoms due to the much larger adsorption energies w
Alloying elements play an important role in the design of plasma facing materials with good comprehensive properties. Based on first-principles calculations, the stability of alloying element W and its interaction with vacancy defects in Ta-W alloys
The time-dependent, mean-field Newns-Anderson model for a spin-polarised adsorbate approaching a metallic surface is solved in the wide-band limit. Equations for the time-evolution of the electronic structure of the adsorbate-metal system are derived