ﻻ يوجد ملخص باللغة العربية
Using the numerical method, we study dynamics of coalescing black holes on the Eguchi-Hanson base space. Effects of a difference in spacetime topology on the black hole dynamics is discussed. We analyze appearance and disappearance process of marginal surfaces. In our calculation, the area of a coverall black hole horizon at the creation time in the coalescing black holes solutions on Eguchi-Hanson space is larger than that in the five-dimensional Kastor-Traschen solutions. This fact suggests that the black hole production on the Eguchi-Hanson space is easier than that on the flat space.
We consider a model of $F(R)$ gravity in which exponential and power corrections to Einstein-$Lambda$ gravity are included. We show that this model has 4-dimensional Eguchi-Hanson type instanton solutions in Euclidean space. We then seek solutions to
We construct new supersymmetric multi-black ring solutions on the Eguchi-Hanson base space as solutions of the five-dimensional minimal supergravity. The space-time has an asymptotically locally Euclidean time slice, i.e., it has the spatial infinity
We systematically investigate axisymmetric extremal isolated horizons (EIHs) defined by vanishing surface gravity, corresponding to zero temperature. In the first part, using the Newman-Penrose and GHP formalism we derive the most general metric func
We construct new solutions of the vacuum Einstein field equations in four dimensions via a solution generating method utilizing the SL(2,R) symmetry of the reduced Lagrangian. We apply the method to an accelerating version of the Zipoy-Voorhees solut
Recent results of arXiv:1907.08788 on universal black holes in $d$ dimensions are summarized. These are static metrics with an isotropy-irreducible homogeneous base space which can be consistently employed to construct solutions to virtually any metric theory of gravity in vacuum.